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Abstract

A THEORY OF COCHLEAR INPUT IMPEDANCE AND MIDDLE EAR 

PARAMETER ESTIMATION

by

SUNIL PURIA

Advisers: Professor Nenad M. Marinovic and Dr. Jont B. Allen

In this thesis it is hypothesized that the geometry of the cat cochlea has evolved to maximize 
sound transmission from the eardrum to the cochlea. This hypothesis is shown to be tenable 
by modeling the cochlear input impedance and the middle-ear. It is also hypothesized that the 
geometric configuration of the middle-ear cavities plays an important role in its acoustic properties.

Various aspects of the cat cochlear input impedance Zc(lj ) are implemented using a transm ission 
line model having perilymph viscosity and a varying cross-sectional scalae area. These model 
results are then compared to the experimental results of Lynch et al. [JASA 72, (1982) pp. 
108-130]. From the model, the following observations are made about Zc(u>): (a) The use 
of anatomically measured scalae cross-sectional areas improves the fits to the magnitude of the 
experimental data, (b) Improved agreement between model and experimental phase for frequencies 
below approximately 150 Hz is obtained when perilymph viscosity and tapering are included in 
the cochlear model, (c) When model scalae tapering and perilymph viscosity are chosen to match 
physiological conditions, the effect of the helicotrema impedance on Zc(u>) is insignificant.

To quantify the effect of Zc{u) on the eardrum impedance, a cat middle-ear model is presented. 
The parameters of the model were evaluated by modeling the eardrum impedance, measured [J.B. 
Allen, (1986) in Peripheral Auditory Mechanisms, eds. J.B. Allen, et al.. Springer-Verlag] at each 
step of various “surgical modifications” to the cochlea and middle-ear. The model indicates that as 
much as 80% of the incident wave in the ear canal is absorbed by the cochlea in the mid-frequency 
region and as a result inaccurate representations of Zc(u) will result in inaccurate representatioas 
of the middle-ear.

A physical model for the middle-ear cavities is presented. The model explicitly takes into 
account effects of non-planar wave propagation due to area discontinuities and visco-ihcrmal 
effects at the walls. This model is experimentally verified by making impedance measurements on 
several cylindrical cavities with area discontinuities in its acoustic path.

The models for the ossicular path and middle-ear cavities are combined to obtain a compre­
hensive model for the “intact” cat eardrum impedance.
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Chapter 1

Introduction

The mammalian auditory system is a highly complex one, consisting of peripheral auditory 

mechanisms and central auditory mechanisms. The role of the peripheral auditory mechanisms, 

collectively called the ear, is to convert the acoustic sound energy in the external environment to 

neural information which is further processed by central auditory mechanisms. In this study we 

will concentrate on the peripheral auditory mechanisms.

The ear can be, anatomically and functionally, divided into three distinct sub-systems called 

the external ear, middle ear, and the inner-ear. Figure 1.1 shows the anatomy of the human ear. 

The external ear is made up of the pinna and the ear canal. The middle ear is made up of the 

tympanic membrane (TM), often reffered to as the eardrum, and three of the smallest bones in the 

human body, known as the ossicles; they are named the malleus, the incus, and the stapes. The 

inner ear is commonly referred to as the cochlea. The middle ear is a mechanical coupler that 

couples sound energy from the air-filled ear canal to the fluid-filled cochlea. Thus sound pressure 

in the ear canal results in motion of the eardrum, and this results in motion of the stapes. The 

cochlea is the organ that transduces (or converts) the mechanical motion of the stapes to neural 

information present in the auditory nerve.

1
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Figure 1.1: Anatomy o f the human auditory periphery: The ear can be, anatomically and 
functionally, sub-divided into three sub-systems called the external ear, middle ear, and the inner 
ear. The external ear consists of the pinna, and the external auditory meatus (earcanal). The middle 
ear consists of the tympanic membrane, also known as the eardrum, and the three ossicles named: 
malleus, incus, and stapes. The spiral-shaped cochlea, is the fluid filled organ that transduces 
mechanical motion of the stapes to neural information present at the cochlear nerve.
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Progress has been made in the past to understand and characterize each of the three subsystems 

of the ear by both direct experimental observations and models. Given the location -  deep in 

the temporal bone -  and the size of the cochlea and middle ear anatomy, it is a difficult task to 

accurately measure motions of the various components directly. Since models depend on measured 

data, it is important to have accurate measurements. Accurate measurements of the cochlear input 

impedance and the driving point impedance of the eardrum are available in the literature for the 

cat. In broad terms, the tack taken here is to first model the impedance data of the inner ear and 

then to model the impedance data of the eardrum. In addition, a model for the external auditory 

meatus is proposed.

The cochlea, a distributed parameter system consisting of many physically moving components, 

is the most complex organ of the auditory periphery. The net effect of all these moving parts, on the 

middle ear, can be described by a single measure called the cochlear input impedance Z c(uj). Thus 

Z c(u>) is the “load” seen by the middle ear. A large portion of the energy that appears in the ear 

canal is dissipated by the cochlea, indicating that the effect of the cochlear input impedance on the 

middle ear is quite significant. Theoretical models of \ZC\ for the cat are below the measured data 

by as much as 20 dB for frequencies below 1-2 kHz. One of the assumptions of past theoretical 

cochlear models has been that the geometry of cochlea does not play a role in the transduction 

process. As a result, the fluid filled vestibule of the cochlea was typically represented by a constant 

cross-sectional area model. This dogma is reexamined in this thesis by modeling the measured 

cochlear input impedance. Effects of other cochlear model parameters such as the cochlear map. 

fluid viscosity, and the helicotrema boundary condition are also reexamined. Computations of the 

cochlear input impedance for man, chinchilla, and guinea pig are compared to those of the cat.

The middle ear consists of two distinct acoustic pathways. First, there is the ossicular pathway
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due to the eardrum, ossicles, and the cochlea. Second, is the acoustic path due to the middle ear 

cavities. The ossicular path consists of many components that are mechanically connected. The 

impedance measured at the eardrum is a function of the parameters of its various components. To 

understand the role of each component, in the transduction process, it is helpful to have eardrum 

impedance measurements for the normal condition and eardrum impedance measurements with 

various “surgical modifications'* along the ossicular pathway. Eardrum impedance measured with 

different “surgical modifications” help to constrain the estimated parameters of the middle ear. 

A specific procedure is outlined to estimate the parameters of the middle ear based on eardrum 

impedance measurements as such.

The acoustic path of the middle ear cavities is not very well understood. It is believed that 

the acoustic path due to the middle ear cavities is more species dependent than the ossicular path. 

The cat middle ear cavity is divided into two cavities by a bony septum. In the past, the middle 

ear cavities have been modeled as lumped parameter circuit models representing the volumes of 

the cavities. To analyze the middle ear cavities, a general model for representing a cavity with a 

varying cross-sectional area is formulated. This model includes effects due to non-planer wave 

propagation near an area discontinuity, effects due to visco-thermal losses at the cavity walls, and, 

effects due to finite wall impedances. The chain-matrix model for cavities is used to analyze what 

possible role the middle ear cavities might play on properties of the eardrum impedance.

Having developed a model for both the ossicular path and the middle ear cavities, the question: 

how does one combine the two models, arises. The assumption that the two models can be added 

in series is presently reexamined.

The chain-matrix model for a cavity with a varying cross-sectional area is verified by making 

impedance measurements on several cylindrical cavities with sudden jumps and constriction in
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their cross-sectional area.

In summary, the gross anatomy of the cochlea and the middle ear cavities have been ignored 

in the past. This thesis endeavors to explore this and other considerations in much greater detail. 

Additionally, a method for constraining the estimated parameters of the ossicular path based on 

eardrum impedance measurements is presented.
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Chapter 2

The tapered cochlea model *

2.1 Introduction

Many aspects of cochlear models are known to fail at low frequencies (i.e. below 1-2 kHz). 

These problems become worse as the frequency decreases. As the traveling wave approaches the 

end of the cochlea, the apical boundary condition becomes important. An improper boundary 

condition leads to apical reflections of the traveling wave. These model failures are most easily 

seen by studying the cochlear input impedance Zc(u) where many of the model pathologies 

manifest themselves. While cochlear input impedance for animals shows no indication of 

apical reflections at low frequencies, model cochlear input impedance data show the presence 

of high Q (/o/bandwidth) cochlear resonances or cochlear standing waves for frequencies below 

500 Hz (Matthews, 1980). A presence of these standing waves in nonlinear cochlear models 

would likely result in other serious artifacts that could confound further interesting results. 

To our knowledge there does not exist any study in the cochlear modeling literature on how 

to eliminate these resonances. Most previous one-dimensional cochlear models (Peterson and 

Bogert, 1950; Zwislocki, 1950), two-dimensional cochlear models (Lesser and Berkley, 1972;

'Portions o f this Chapter and Chapter 3 have been accepted for publication in J. Acoust. Soc. Am., 1991.89t 1). pp 
287-309.

6
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Sondhi, 1978), non-linear cochlear models (Hall, 1974), active models (Neely and Kim, 1986), 

and non-linear active models (Diependaal, 1988) have assumed a cochlea map of the form 

I c f {x ) =  A[10 x t ]̂. A cochlear map of this form will be referred to as a straight cochlear

map. Standing waves exist under the condition of laige reflection coefficients at the stapes end 

and at the apical end of the cochlea. In this study we shall show how standing waves as seen in 

Zc, are related to the cochlear map, scalae tapering, viscosity, and the helicotrema impedance.

A second problem concerns the magnitude and phase of the cochlear input impedance at low 

frequencies. Previous cochlear models indicate that the cochlear input impedance significantly 

decreases in magnitude for frequencies below 1-2 kHz. For the cat, models and experimental 

magnitude data of Lynch et al. (1982) are in disagreement by as much as 16 dB at 50 Hz. In the 

real cochlea, the scalae are tapered, with a decreased area at the apex. Also, in the real cochlea, 

the scalae fluids are viscous. These scalae-area changes and viscous-losses play an important role 

at low frequencies (Koshigoe et al., 1983). Only by including scalae tapering and viscosity, can 

we hope to overcome the nonrealistic standing waves, and hope to accurately model the cochlear 

input impedance at low frequencies.

In summary, there is a poor general understanding o f low frequency phenomena in the cochlea. 

In this study we investigate low frequency cochlear phenomena by modeling the cochlear input 

impedance.

There are other reasons besides low frequency modeling questions that motivate us to study the 

cochlear input impedance. First, the mechanical “load” on the middle ear is the input impedance 

of the cochlea Zc(u). Inaccurate representations of Zc will result in middle-ear model parameter! 

that are not representative of the physical system. A good model for Zc is necessary to estimate 

the middle ear parameters accurately (Moller, 1965).
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Second, accurate knowledge of Zc is crucial for eneigy flow considerations in the forward 

and reverse directions. The acoustic energy in the ear canal normally propagates towards the 

cochlea. There have been many observations made in the ear canal indicative of non-linear, 

and perhaps active, acoustic emissions originating in the cochlea. These emissions result 

from a reverse energy flow from the cochlea to the ear canal. Examples include the cubic 

difference tones resulting from non-linearities within the cochlea (Wilson, 1980; Kim et al., 1980; 

Fahey and Allen, 1985), as well as spontaneous and evoked otoacoustic emissions observed by 

Kemp (1978:1979), Zurek (1981), and others. The impedance mismatch at the cochlea-stapes 

boundary reflects back some of the acoustic emissions generated in the organ of Corti (Kemp, 

1980). The rest of the energy passes through the middle ear and appears in the ear canal. To 

estimate the reflection and transmission of eneigy at the cochlea-stapes interface, it is necessary to 

have a good model of the middle ear and of the cochlear input impedance.

This Chapter is organized as follows: In Section 2.2 we review previous models and 

measurements of cochlear input impedance. In Section 2.3 the the model equations are formulated. 

A summary of this Chapter can be found in Section 2.4. In the Chapter that follows we use the 

model to analyze some of issues outlined in the introduction.

2.2 Previous work

Figure 2.1 shows the Lynch et al. (1982) lumped network representation of the cochlear inpul 

impedance, which encompasses many previous models. It is an electrical analog of the mechanical 

system under consideration with voltage corresponding to pressure and current to volume-velocily 

In Table 2.1 we summarize the results of numerous research vis-a-vis the model of Fig. 2.1. Lynch 

et al. (1982) estimated parameters for the network of Fig. 2.1 based on averaged expcrimeiual
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Mo

Ro

Figure 2.1: Many previous models of Zc can be generalized by this lumped parameter circuit. The 
values for R c, R 0, M 0 and the mechanisms corresponding to them are listed in Table 2.1.

input impedance data. We start from the Lynch et al. model because the experimental data, 

on which that model is based, is the most comprehensive. This makes their network model a 

good reference point for comparisons. R c in Fig. 2.1 represents the cochlear impedance at high 

frequencies. At low frequencies, Zc is given by the parallel combination of R c and R 0. A 

transition region exists, which is between 10 Hz and 200 Hz, where the mass M 0 has an effect.

Based on modeling considerations, Zwislocki (196S) estimated Z c(ui) to be real and of value 

R c = \J2pK0/(30S0, as shown in Table 2.1.

Tonndorf et al. (1966) measured \ZC\ for the cat and showed it to be frequency dependent.

They found a 6 dB/oct slope for frequencies below 400 Hz. Near 400 Hz, \ZC\ was approximately

8 M il  (106 dyn  -  sec/cm 5). Above 400 Hz \ZC\decreased, and at approximately 1 kHz tended to

fluctuate between 2-5 M il. The maximum error they reported was a factor of 3 (±9.5 dB). Dancer

and Franke (1980) on the other hand did not find a low frequency slope in their measurements of j

the guinea pig cochlear input impedance magnitude.

i
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Table 2.1: Comparison o f Zc by various researchers:

Figure 2.1 is a companion figure to this table. The model of Zc by Zwislocki, 
based on mathematical considerations, is a pure resistor Rc. Dallos’ model, builds 
on Zwislocki's model by adding the series combination of mass of the helicotrema 
M 0 and damping of the helicotrema R 0 in parallel with R c. Allen derived a model 
for Zc based on the WKB approximation to the one-dimensional formulation of the 
cochlea. Allen’s model is also the one of Fig. 2.1, but with R 0=0. Since R 0=0 
in Allen’s model, lim /_o \ZC\ -+ 0 and lim/_o LZC -* §. Figure 2.1 is also the 
Lynch et al. model, based on measured data. In that model lim /_o \ZC\ -* RC\\R0< 
and lim /_o LZC -+ 0, due to the presence of R 0. Thus there is a low frequency 
discrepancy in the theoretical models of Z c and the measured data. This discrepancy is 
most significant for frequencies below 1 kHz, and is as large as 20 dB at 10 Hz. Based 
on approximate solutions to a one-dimensional formulation of the cochlea, Koshigoe 
et al. conjectured that this low frequency discrepancy in Zc is due to the effects of 
viscosity. In addition to not providing a good fit to the measured data, the Koshigoe 
et al. model does not attribute any physical mechanism(s) to R 0. However, they first 
argued that it is important to incorporate tapered scalae area in model calculations.
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Table 2.1: Comparison of Zc by various researchers.
Reference Model Parameter

R : dyn -  sec/cm? 
M  : s /cm 4

Physical or 
Physiological Basis

Zwislocki (1965) Fig. 2.1
R0 = M0 = oo

BM compliance 
and scala area at 
base

Tonndorf et al. 
(1966)

measured \ZC\ data 
for the cat

Dallos(1970) Fig. 2.1 R c: as per Zwislocki 
R 0, M0 species 
dependent [see Eq. (2.11)]

R 0, M0 due to 
helicotrema

Sondhi(1978) Numerical
calculation

similar to WKB 
[see Fig. 3.4]

from one- and 
two-dimensional 
cochlear models

Allen (1979) Fig. 2.1 ^  =  y /1Jw *  
* .  =  °  . * .  =  &

derived from WKB

Dancer and Franke 
(1980)

measured |ZC| data 
for the guinea pig

Lynch etal. (1982) Fig. 2.1 R c = 1.2 x 106, 
R 0 = 0.28 x 106, 
M0 =  2250

phenomenological: 
based on measured 
data for the cat

Koshigoe et al. 
(1983)

R  +  sM R  =  R 0{u), M  =  M0(u) Zb m > viscosity and 
constant cross- 
sectional area

Koshigoe et al. 
(1983)

Numerical
calculation

see Fig. 3.9 Z b m * viscosity and 
tapered cochlea
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Dallos’ (1970) model closely resembles the Lynch et al. (1982) model. The physical basis for 

R 0 and M0, as hypothesized by Dallos, is the viscosity and mass of a short tube representing the 

helicotrema, with the transition region being between 100 Hz and 1 kHz. In cochlear modeling, 

the helicotrema boundary condition has always been a point of conjecture. We shall show that 

when we assume physiologically reasonable parameters, this boundary condition has a negligible 

effect.

Allen’s (1979) derivation of Zc is based on the Wentzel-Kramer-Brillouin (WKB) approxima­

tion to the wave-equation formulated for a cochlea model with constant scalae area, zero perilymph 

viscosity, no reflections, and no helicotrema. The WKB solution assumes that the wavelength 

along the cochlea varies slowly and thus there are no reflections. Under such circumstances the 

forward-traveling wave-equation can be approximately solved by expressing the solution as an 

asymptotic series. Based on this approach Allen’s Zc is different from the Lynch et al. model 

to the extent that R 0 = 0. It is the inclusion of R 0 in the Lynch et al. model that gives rise to 

the behavior of Zc below 200 Hz. From Table 2.1 we see that the WKB R c is given by 2pco/So, 

where cq is the speed of the traveling wave on the basilar membrane at the stapes and the area at 

the base is So =  5(0). By substituting the value for co it is easy to show that the WKB Rc is 

equivalent to Zwislocki’s radiation resistance R c. At low frequencies the WKB input impedance is 

dominated by the mass given by M 0 = 8p/(5ofci), which depends on the rate of change parameter 

ki of the BM stiffness at the stapes. In this model, the cochlear input impedance depends only on 

the physical parameters of the cochlea in the neighborhood of the stapes.

Sondhi’s (1978) numerical calculations of Zc from one-dimensional and two-dimensional 

cochlear models are qualitatively similar to the WKB solutions for Zc.

It is natural to consider what physical mechanisms give rise to R 0 in Fig. 2.1 . Can R„ be
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accounted for by including scalae tapering and viscosity? Given that R 0 affects the very low 

frequency region, it is reasonable that perhaps the source of its effect is in scalae viscous losses.

Koshigoe et al. (1983) provide a mathematical framework that addresses this issue. Their 

derivation of Zc, in a cochlear model with viscosity and constant scalae area, consists of frequency 

dependent parameters R 0 and M 0. However since their results do not provide a reasonable fit to 

the measured input impedance data, and their expressions fail to give insight into the mechanisms 

that dominate at frequencies below 300 Hz, further analysis is in order. Koshigoe et al. also 

calculated Zc for a tapered scalae area model, with and without viscosity. At frequencies below 

500 Hz their inviscid calculations indicate \ZC\ to be four to five times smaller than those which 

include viscosity. We will show that this result is inconsistent with our own numerical calculations. 

However, they were the first to argue the importance of the tapered scalae in model calculations.

In Chapter 3 we have made extensive use of the impedance model and data of Lynch et al. 

(1982). To qualitatively isolate the parameters that have the greatest influence on the cochlear 

input impedance, we initially use the averaged measured data and model results of Lynch et al.. 

We then use their individual data in an attempt to understand the individual differences.

2.3 The chain-matrix formulation for cochlear mechanics

The cochlea, in most animals, is a spiral-shaped structure. It consists of three fluid-filed chambers 

called the scala vestibule, scala media, and the scala tympani. In this study we assume that the 

effect of the spiral-shape on the acoustical properties of the cochlea are insignificant (von Bdkdsy. 

1960, p. 407; Vieigever, 1978). Figure 2.2a shows a simplified sketch of the cochlea when it is 

uncoiled from its spiral-shape. In Fig. 2.2a it is further assumed that the scala media is treated 

as part of the scalae vestibule. The two resulting chambers are separated by the organ of Com.
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which is assumed to have a width P(x). The scala vestibule area 5V(x) and scala tympani area 

5 r(x )  are assumed to vary along the cochlear length. The distance x  is measured from the stapes 

end. The basal end of the cochlea corresponds to x  =  0 cm  and the apical end of the cochlea 

corresponds to x =  x i  cm, where x i  is the total length of the cochlea. The scalae are divided into 

np cylindrical segments, each of length A cm. Under the assumptions of conservation of fluid 

mass and momentum, we obtain long-wave expressions for the pressure and volume-velocity.

2.3.1 Some definitions

In the formulation of our model equations, several different types of impedances and admittances 

are required. There are two basic types of velocities in acoustics, particle velocity and volume- 

velocity. The volume-velocity is given as surface integral over the particle velocity. Frequently 

an equivalent uniform distribution of velocity is assumed, in which case, the volume velocity is 

defined as the area times the effective particle velocity. The two different types of velocity lead to 

two different types of impedance which are called specific impedance, and acoustic impedance. 

The specific impedance is given as the ratio of the pressure difference divided by the particle 

velocity, and has units dyn  -  sec/cm 3. The acoustic impedance is defined as the pressure 

difference divided by the volume velocity, which has units dyn -  sec/cm 5. The cochlear input 

impedance Zc, the helicotrema impedance Zh, the characteristic impedance of a tube Z 0, and the 

series and shunt impedance of a “T” network Za and Zb are all acoustic impedances. We must 

also define the series acoustic impedance Z  and the shunt acoustic admittance Y  for the lossy 

transmission line on a per unit length basis in units of dyn — sec/cm,6 and cm 4 • dyn~l • src~1 

These and other symbols used in this Chapter and Chapter 3 are listed in Appendix A.
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Figure 2.2: (a) Approximate physical representation o f the Cochlea: S v ( x )  and S t { x )  are the 
scala vestibule and scala tympani area functions, /3(x) is the basilar membrane (BM) width, RW 
is the round window, and OW is the oval window. The footplate, with area A / p, is at the basal 
end of the cochlea and the helicotrema is at the apical end of the cochlea. Not shown here is the 
stapes which would have been attached to the footplate at the oval window, (b) Equivalent model 
in terms o f  “ T"  sections: the elements Za(x,  w) and Zb(x, oj) are functions of both position along 
the length of the cochlea and stimulus frequency. The cochlea is divided into np sections of length 
A  cm. (c) Chain-matrix formulation o f the physical model o f (a): The matrices are formulated 
to include changes in scalae area, effects due to perilymph viscosity, and variations in the organ 
of Corti. Ub is the volume velocity at the base, K rw is the round window stiffness, and Zh is the 
impedance of the helicotrema.
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2.3.2 General approach

Starting from the basilar membrane impedance Z b m (x ,u ), the series impedance Z (x ,u ) ,  and 

shunt admittance Y ( x ,u ) from lossy transmission line theory, we would like to formulate the 

chain matrix elements, A(x,-,u>), J9(z,-,w), C (z,,w ), £)(z,-,u>) (as shown in Fig. 2.2c). The 

basilar membrane impedance Zbm{x{, w) is given in terms of the physical variables relevant to 

the cochlea as described in Appendix C. From Zbm< the BM width P(x), the scalae area 5(x), 

we may find the shunt admittance per unit length of the basilar membrane YgM(x{,u). The 

lossy transmission line impedance Z  and shunt admittance Y  are described in Appendix B. We 

then find Z ' and Y ', which are the cochlear two chamber series impedance per unit length, and 

shunt admittance per unit length. These allow us to find T and Zo, the propagation constant and 

characteristic impedance, for the lossy cochlear transmission line. Next we find the “T” elements 

Z a and Zb (see Fig. 2.2b), and finally the chain matrix elements, A, B, C, and D, which can be 

expressed in terms of the “T” elements.

2.3.3 Lossy BM series impedance

The equation for the series impedance Z(x,u>) [Eq. (B.l)] is for a single vestibule. Anatomical 

measurements of scala vestibule cross-sectional area Sv{x) and scala tympani cross-sectional area 

S t (x ) on humans indicate the areas of the two vestibule to be approximately equal for distances 

greater than 0.3 cm from the round window (Wever, 1949, pp. 276-278). To our knowledge 

measurements of the cat scala tympani cross-sectional area are not available in the literature. Thus 

we will assume S(x)  = S v ( x )  = St (x ). The series impedance for a two chamber model then is

Z'(x ,uj) = 2Z(x,w).  (2.1)
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The two impedances Z  and Z'  are given as per unit length series acoustic impedances (dyn -  

sec/cm 6) along the vestibule.

23.4 Lossy BM shunt admittance

To find the lossy transmission line shunt admittance for the cochlea, we must modify Y  of 

Appendix B to include the shunt admittance due to the basilar membrane. The basilar impedance 

impedance Z b m (x , w)is a specific impedance (dyn -  secf cm3). From a macromechanical point 

of view, Z b m  consists of BM stiffness Ii'b(x), damping, and mass. Zb m (x ) is a physically 

motivated, micromechanical model of BM specific impedance that incorporates a resonant tectorial 

membrane (Allen, 1980) and which leads to a fourth order equation for partition dynamics. These 

parameters depend on the cochlear map as shown in Appendix C.
t

The shunt admittance due to viscous losses Y  and the shunt admittance due to the basilar 

membrane YgM are in per unit length acoustic admittances (cm4 • dyn~l • sec-1). The BM 

impedance Z b m (x ,w), when transformed t to basilar membrane acoustic admittance per unit 

length is,

( * . « ) =  H Z b m (x, u) (2>2)

Thus, the total lossy transmission line acoustic admittance per unit length is found by adding 

the two admittances together

Y \ x , u )  = 2 Y ( x , u )  + Y{,M{z ,u ) .  (2.3)

The factor of 2 accounts for the admittance due to the two chambers.

*Zb m (x ) was formulated for the rectangular coordinate system with height H cm. The present model is formulated 
in the cylindrical coordinate system. The impedance transformation was necessary for the results of the two formulations 
to be equivalent (Viergever, 1980, p. 69).
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Equation (2.2) is the BM acoustic admittance per unit length. Model parameters and physical 

measurements of the BM are often given in terms of BM specific impedance. For our model we 

use

Z'b m (x ’u ) = P(x ) / YgM(x,u}) (2.4)

In this equation the transformed BM stiffness is K'(x).  The basilar membrane stiffness at the base 

is defined as K q =  K'(x  =  0).

2.3.5 Effect of fluid compression

For most fluids, including perilymph, the ratio of specific heats 7  ~  1, and thus G (x ,u )  of 

Eq. (B.5) is zero; consequently Y ( x , u )  in Eq. (2.3) reduces to sC(x).

The compliance C(x)  = S(x) /pc2 is a measure of compressibility of the fluid. Near the base, 

2 C(x)  is less than 6% of the basilar membrane admittance, and in the apical region, 2 C(x)  is at 

least three orders of magnitude smaller than Yb m - Although not shown here, the effect of including 

s2C(x)  in Eq. (2.3) on \ZC\, was found to be less than 0.5 dB near 20 kHz. No differences were 

observed in LZC. This shows that the incompressibility assumption of the cochlear fluids is valid 

and that the shunt admittance can be approximated as,

!" (* ,« )  » y £ M(*,w) (2.5)

for all further calculations. In the above formulation, the cells of the organ of Corti are assumed 

to be incompressible.
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2.3.6 Transmission line parameters

Given Z ' and Y '  one may calculate the characteristic impedance Zo and the propagation constant 

T for the lossy cochlear transmission line

/  Z  \  1 Z0(x ,u )  =  ( - J  ,

r(x,u>) = (Z'y')1/2.

(2 .6a)

(2 .6b)

Transformation to the equivalent cochlear T network of Fig. 2.2 b is defined in terms of Za 

and Zb as follows: (Flanagan, 1983, chap. 3):

Za(x ,u )  = Zotanh >

Zb(x,u>) =  Zocsch(TA).

(2.7a)

(2.7b)

2.3.7 Chain*matrix form

The relationship for the pressure and volume velocity of each section of length A  can now be put 

in chain -  m atrix  form (Weinberg, 1962; Pierce, 1989)

( 2 . 8 )

P(x) A B P(x  +  A)

U{x) C D U(x + A)

where elements of the ABCD chain-matrix are

A -  1 + —
+ Zb'

* = Z„(2 + f),

D = A.

(2.9a) 

(2.9b) 

(2.9c) 

(2 9d)
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Equation (2.8) relates the pressure difference and volume velocity of a cylindrical section 

at x  given the pressure difference and volume velocity of a section at x + A. Inherent in the 

formulation of Eq. (2.8) is a forward and backward traveling-wave.

Referring to Fig. 2.2c, the chain is started at the helicotrema end by assuming U(xl) =  1. 

The unit volume-velocity results in a pressure drop P {x i )  across Zh(uj), the acoustic impedance 

of the helicotrema. Equation (2.8) is then recursively calculated with the space index decreasing 

from x = x l  at the helicotrema end to x  = 0 at the base, for np segments. P(x)  and U(x) are 

finally normalized so that the calculated volume-velocity at the base U{0) =  U(,5o, to satisfy the 

boundary condition in the base of the cochlea.

We used the chain-matrix method to do all the calculations for each of the np segments. The 

number of sections np was successively increased by a factor of two until no further change in 

the results were observed; this occurred at np = 1024. The computations were carried out on 

an Alliant FX/80 computer. To verify our chain-matrix method we made comparisons of Zc and 

the BM velocity calculated by solving Laplace’s equation for the constant scalae height and zero 

viscosity case, using the difference equation * method (Allen, 1977). In making these comparisons, 

we discovered a helicotrema boundary condition problem at low frequency. This will be further 

discussed in section 2.3.10. With this exception, calculations of the cochlear input impedance and 

BM volume-velocity were identical for the two methods.

2.3.8 Cochlear input impedance

The volume-velocity that enters the stapes is u3tA j p. By conservation of mass, this volume 

velocity is equal to the volume velocity entering the scala vestibule in the base u&So. The cochlear

*The model o f (AUen, 1977) was formulated for a two-dimensional cochlear model {A11' order system of equation* 
in the notation of that paper). The formulation was sufficiently general enough so as to allow an one-dimen»ional 
formulation (2nd order system of equations), as is appropriate for the present case.
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acoustic input impedance is then calculated from

Z‘( U ) = S -  < 2 ' 1 0 )

Measurements of pressure in the cat scala vestibule and scala tympani, as a function of the 

tympanic membrane sound pressure level, and over a wide range of frequencies, have been found 

to be linear (Nedzelnitsky, 1980). With the tensor tympani muscle cut from the stapes, the 

mammalian middle ear act as a linear system for sound pressure levels of up to 130 dB-SPL 

(Guinan and Peake, 1967). Therefore, we assume Eq. (2.10) to hold at all levels of input. The 

linearity assumption is not necessarily valid for all animals. For example Rosowski et al. (1984) 

have found the acoustic input admittance at the alligator lizard tympanic membrane to be ear canal 

pressure dependent for stimulus levels greater than 70 dB SPL.

2.3.9 The helicotrema boundary condition

When formulating a cochlear model one may assume different properties for the helicotrema. The 

two most common boundary conditions are the open circuit Zh. =  oo and the short circuit Zh = 0 . 

A third choice is the (Dallos, 1970) helicotrema model using a short-tube impedance (Tl). In 

this paper we have limited ourselves to either the short-tube or short-circuit impedance boundary 

condition. The open-circuit assumption is nonphysiological since it does not allow for any flow 

between the two scalae.

The acoustic impedance of a tube of radius a/, and length lh given by (Beranek, 1954, p. 135)

•7 ( \ _  , 4  Plh , ,  . . .
Z f t ( w )  — — 4 " + 7 r — 2 U '  ( 2 . 1 1 )7raJ 3 7r

This approximate formula is valid for a,h(cm) < 0.2/y/J. Dallos (1970) used Eq. (2.11) for his 

calculations of Zc. Mulroy (Lynch et al., 1982. note 11) measured the helicotrema radius of the
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cat by scanning electron microscope techniques and found it to be 0.0125 ±  0.0005 cm. Using this 

radius Eq. (2.11) is valid for /  < 256 Hz. If we assume the helicotrema to be a bent circular tube 

of radius ah as above, then the length of the helicotrema lh =  7ra* «  0.04 cm. The short-circuit 

condition will be referred to as Zh = SC , and the tube impedance condition will be referred to as 

Zh =  T I  throughout the text.

2.3.10 The BM response

Although this is not explicitly a study of BM mechanics, an intermediate result is the BM 

volume-velocity at any place along the length of the cochlea

.. , , P (x  +  A ) +  ZaU(x 4- A)
Ub m { x , w ) = - ± -------------------------------------------------------------------------- (2 . 12)

where the terms of Eq. (2.12) are identified in Figure 2.2b. The BM center-line particle-velocity, 

assuming a half-sine shaped velocity distribution over the BM width, is

f r  ,  ,  T U b m ( x )  . . .
UBM{ x , u )  =  -2- ^ (-g ) ■ (2 . 13)

By conservation of fluid mass the sum of the complex BM volume-velocity Ub m (x ) along the 

length of the cochlea and through the helicotrema m ust be equal to the volume-velocity that enters 

the base of the cochlea UbSo, at any given stimulus frequency. This is more formally expressed as 

the volume-sum
n p

ii(,So =  U{xi)  +  ^  Ub m {x%). (2.14)
<=i

Where U(x i )  is the volume-velocity through the helicotrema and x,- =  A i. Note that ujSo is a 

real quantity and thus the sum of the imaginary part of Eq. (2.14) must be zero. In the difference

equation formulation of Allen (1977), Eq. (2.14) was found to be violated for low frequencies
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(below 200-300 Hz). This was true independent of the cochlear map used. We attribute this to an 

improper volume-velocity at the helicotrema boundary U(x i )  in that model.

2.4 Summary

To this point we have formulated a one-dimensional cochlear model which includes scalae area 

variations, viscous losses due to perilymph, organ of Corti impedance variations etc., using 

the chain-matrix formalism. In the following Chapter we analyze the effects of variations in the 

cochlear map, scalae geometry, perilymph viscosity, and the helicotrema boundary conditions. The 

transmission line model was chosen so that each of these effects can be analyzed independently. 

Following Sondhi’s observation that the cochlear input impedance for two-dimensional models is 

indistinguishable from that of one-dimensional models, we have assumed that the one-dimensional 

formulation will be adequate for this purpose.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Chapter 3

The cochlear input impedance

Having developed the chain-matrix cochlear model in Chapter 2 we now use that model to analyze 

various low frequency effects discussed in that chapter, as well as high frequency effects that have 

previously not been analyzed.

This chapter is organized as follows: Section 3.1 shows the effects of various cochlear maps 

on Z c. In Sections 3.2 and 3.3, the effects of viscosity and the helicotrema on Z c are analyzed, 

assuming a constant scalae area. Sections 3.4 and 3.5 show the effects of scalae tapering on 

Zc, and the interactions of tapering with viscosity and the helicotrema. Section 3.6 compares 

measured data and the model with tapering and viscosity. Resulting comparisons to the Lynch 

et al. (1982) experimental data are also shown in Sections 3.6 for several choices of parameter 

variations. Inter-animal variations are discussed in Section 3.7. Computations of Zc(u>) for man. 

guinea pig, and the chinchilla are shown in Section 3.8. An inter-species comparison is made in 

Section 3.9. A discussion of the results can be found in Section 3.10, followed by a summary in 

Section 3.11. A list some of the symbols used in this chapter can be found in Appendix A.

24
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3.1 Apical reflections and the cochlear map

As discussed in Appendix C, an important parameter for the computation of the basilar membrane 

impedance Z b m {x ) is the cochlear map. The cochlear map defines the BM peak velocity location 

along the length of the cochlea, as a function of the input frequency. The effect of three different 

cat cochlear maps on Zc(u>) are compared in this section:

1. Most existing cochlear models use a “straight” cochlear map of the form

/ c f (x ) =  456 10*tIff*!,-*) (3.1)

where x  is the distance in cm  from the stapes, the length of the cochlea is x i ,  and CF stands 

for characteristic frequency. The “c” and “s” in the superscript stand for cat and straight 

cochlear map.

2. Liberman’s (1982) cochlear map derived from single neuron labeling experiments is

/ c f (x ) = 456 - 0.8 (3.2)

3. Greenwood’s (1961) cochlear map is derived from human psychophysical critical band 

experiments. It is then scaled from the human cochlea to the cat cochlea. The Greenwood 

cochlear map, with some modifications (Greenwood, 1990) to his original parameters, is

/ c f (x ) — 456 (3.3)

It should be noted that the Greenwood cochlear map for the cat used here contains the original 

subtractive constant 1, whereas he now uses the constant 0.8 found by Liberman to provide the 

best fit to neural data (Greenwood, 1990). We have used a subtractive term of 1 simply to illustrate 

the effect of such a cochlear map on apical reflections.
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These three cochlear maps are shown for comparison in Fig. 3.1. Once the cochlear map is 

chosen, our specification of Zb m {x , w) is complete (see Appendix C).

Figure 3.2 shows Zc(u)  corresponding to the three cochlear maps with an untapered cochlear 

model, zero viscosity, and a short-circuit helicotrema boundary condition. Figure 3.2a shows the 

magnitude of Zc(u)  and Fig. 3.2 b shows the phase of Zc(lj). All succeeding figures illustrating 

cochlear input impedance calculations will follow this format. The use of a straight cochlear 

map results in laige oscillations in Zc for input frequencies below «  500 Hz, indicative of apical 

reflections. Liberman’s cochlear map reduces the apical reflections, and Greenwood’s cochlear 

map virtually eliminates them.

To the best of our knowledge all previous cochlear models that have used the straight cochlear 

map have apical reflections, and therefore standing waves, for frequencies below 300 Hz. Published 

examples include the oscillations in the BM frequency response (Hubbard and Geisler, 1972; 

Matthews, 1980) as well as the presence of large oscillations in Zc (Matthews, 1980), as show in 

Fig. 3.2 . Understanding and eliminating these artifacts is particularly important in time-domain 

implementations of non-linear cochlear models.

Apical reflections are directly related to the low frequency limit / c f (x l ) of the cochlear map. 

For example, close examination of Fig. 3.1 reveals that for / " F , frequencies below 456 Hz are 

not defined. Consequently, for input frequencies below this critical frequency, the traveling wave 

launched at the stapes will reach the apical end and be reflected back towards the stapes. This 

results in standing waves along the length of the cochlea. For frequencies below 91 Hz, f c F is not 

defined correspondingly there are apical reflections below 91 Hz. Note that the apical reflections 

actually begin at a frequency slightly above the low frequency end of the cochlea because of the 

finite slope of the traveling wave apical to the CF.
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Figure 3.1: Cochlear map functions for the cat anatomy pertaining to Eqs. (3.1), (3.2), and (3J)  
normalized to percent distance from the stapes: The difference between the three cochlear maps 
lies mostly in the frequency region below 1 kHz. The cochlear map is used in calculating the 
basilar membrane specific impedance Zb m {x , u ). Liberman’s cat cochlear map / c f ( x )' based 
on single auditory-nerve fiber labeling experiments, will be used for all cat Zc(w) calculations in 
this study.
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Figure 3.2:

Magnitude and phase o f Zc(u) for each o f the three cat cochlear maps o f Fig. 3.1: 
The model parameters are: constant scalae area [S(x) =  0.02 cm2], no viscosity 
(NV.T7 =  0), and an acoustic short circuit (SC) helicotrema boundary condition. The 
low frequency limit of the straight cochlear map, f c F (x i>) *s 456 Hz. Stimuli below 
this frequency result in large amplitude oscillation in Z c indicating the presence of 
standing waves. The low frequency limit of Libetman’s cochlear map /cV (xt-) ' s 
91 Hz. In this case the amplitude of the apical reflections are significantly reduced, 
but nevertheless present for frequencies below /^ ( x / , ) -  In Greenwood’s cochlear 
map limx_ xt / ^ ( x ) - *  0 - In this case all frequencies are represented on the basilar 
membrane and thus the stimulus energy is dissipated by the motion of the BM before 
it reaches the apical end of the cochlea. Thus there are no apical reflections due to 
the end of the cochlear map when Greenwood’s cat cochlear map is used. Standing 
waves exist when there are reflections at both the apical end and at the stapes end 
of the cochlea. One way to eliminate the standing waves is to eliminate the apical 
reflections. Since the standing waves are eliminated by using Greenwood’s cochlear 
map, we conclude that apical reflections are directly related to the low frequency limit 
of the cochlear map / c f (z l ).
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Fig. 3.2: Magnitude and phase of Zc(u>) for the three cat cochlear maps
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In f c F, all frequencies of interest are represented and therefore there are no apical reflections. 

Only in the later case is the energy completely dissipated by the BM before the wave reaches the 

helicotrema. Viergever (1988) has argued that minute reflections exist everywhere in the cochlea 

due to the stiffness gradient in the BM impedance; however, if they exist these reflections have 

little effect on Zc and may usually be ignored.

According to Greenwood, f ^ F was obtained by scaling the human function to the cat. 

Greenwood used a human-to-cat cochlea length ratio of 35:22 respectively. CabezudO (1978) 

found the averaged cat cochlea length to be 2.36 ±  0.1 cm. Liberman found that the average cat 

cochlea length to be about 2.5 cm. Given this length, Liberman found the slope of the cochlear 

map to be the same as Greenwood’s but the end points of the cochlear map differed. Liberman 

derived a new cochlear map using the Greenwood formula, but with constants determined from his 

own data. Liberman’s cochlear map }qF is based on intracellular labeling of single auditory-nervc 

fibers of known characteristic frequency, and is thus derived from a physical correlation between 

characteristic frequency and place. Unless otherwise stated, we will use f( jF in all further 

calculations of the cat Zc(u>).

3.2 Constant scalae area

Figure 3.3 shows the effects of viscosity and the helicotrema on Zc(u)  for a constant scalac 

cross-sectional area cochlear model. The addition of viscosity has very little effect on Zc except at 

frequencies below 50 Hz. Without perilymph viscosity (NV), a tube impedance (TI) helicotrema 

boundary condition slightly reduces the amplitude of apical reflections. The largest difference 

occurs near 25 Hz where \ZC\ is reduced approximately by a factor of 2.5 (7.6 dB) and L V. by 

approximately -37r/4. When perilymph viscosity (WV) is added to the TI case, \ZC\ increases bv
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approximately a factor of 1.6 (4.1 dB) near 25 Hz, and the phase changes by less than 7t/18( 10°) 

from the (NV.TI) case. Also shown in Fig. 3.3 is the average of cochlear input impedance 

measurements made on four cats by Lynch et al. (1982). The animal impedance measurements 

were made with the round window intact. Since the model computations were made without the 

round window, comparisons between data and model results are meaningful only for frequencies 

above «70  Hz. More will be said regarding the effects of the round window on cochlear input 

impedance in section 3.5. Figure 3.3 indicates that the animal input impedance magnitude is 

higher that the magnitude of all four model cases for frequencies below about 1-2 kHz. The phase 

for all four model cases is significantly higher than the averaged phase data for all frequencies. We 

conclude from Fig. 3 3  that in a constant scalae area model, neither the viscosity, or a realistic 

helicotrema, or the combination o f the two, model the experimental data, which shows a significant 

increase in the cochlear input impedance magnitude below about 1-2 kHz.

Dallos (1970) hypothesized a helicotrema consisting of a mass and damper in parallel with the 

cochlear structures, which is represented here as the TI boundary condition. Figure 3.3 shows that 

for the constant scalae area model. Zc is mass-like in the 50 Hz < /  < 2 kHz region, independent 

o f the helicotrema boundary condition. This conclusion seems to be in direct conflict with Dallos' 

hypothesis regarding the effect of the helicotrema on the cochlear input impedance.

3.3 Comparison of constant scalae area cochlear models

Some of the input impedance models from Table 2.1 that have constant scalae area and inviscid 

perilymph are plotted in Fig. 3.4. Not explicitly shown is Zwislocki’s (1965, p. 37) theoretical 

consideration of the specific input impedance (ZC3)

+  (3.4,
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Figure 3.3:

The effects o f the helicotrema and perilymph viscosity in a cochlear model with 
constant scalae area [S(x)  =  0.02 cm2/:  The “Av cat data” is the average cochlear 
input impedance of four cats by Lynch et al. (1982). The impedance measurements 
were made with the round window intact. The model calculations are without 
the round window. Model impedance calculations with perilymph viscosity (WV, 
7/ =  0.02) are not significantly different from the no viscosity (NV, tj =  0) case. For 
a tube impedance (TI) helicotrema boundary condition, the magnitude of the cochlear 
input impedance tends to vary in the 23 Hz region, but it does not increase the 
impedance magnitude over a wide range of frequencies as is seen in the Lynch et al. 
data. The impedance magnitude does not increase when both a TI at the helicotrema 
and perilymph viscosity are included in the model. Thus the helicotrema, in terms of 
its effect on the magnitude of Zc, is not as significant as that hypothesized by Dallos 
(1970). It is clear from this figure that the magnitude of model results and measured 
data diverge for frequencies below 1 kHz, and the model phase is substantially higher 
(more mass-like) than the phase of the averaged data.
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Fig. 3.3: The effects of the helicotrema and perilymph viscosity in a cochlear model with constant
scalae area
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By assuming the square bracketed quantity of Eq. (3.4) to be approximately equal to 1, Zwislocki 

concludes that “the specific input impedance of the cochlea is independent of frequency and is 

real”. Note that the left-hand term of Eq. (3.4), when divided by 5b. is equivalent to the radiation 

resistance R c derived from the WKB solution (Allen, 1979) which is equal to 2pc0/5o, where co 

is the velocity of the traveling-wave on the BM.

Dallos (1973, Fig. 4.15) calculated Eq. (3.4) exactly and showed that Z ca is resistive at 

frequencies above «  30 Hz -  for a given set of parameters. In Dallos’ helicotrema model of Zc, 

the impedance due to the cochlea Z ca is taken to be independent of frequency, i.e. Zc,  =  R c.

The solutions for Zc by the WKB method and Koshigoe et al.'s [1983; Eq. (62) without K rw] 

are also shown in Fig. 3.4. As a result of approximations in their formulation, Koshigoe et al.'s 

constant scalae area results are valid only in  the 30 Hz -  1 kHz frequency region (Koshigoe et 

al., 1983, p. 489). Both Koshigoe et al. and the WKB results are derived under the assumption 

that there is only a forward traveling wave. Since the chain-matrix method for a constant scalac 

area yields a result similar to that of Koshigoe et al., we might reasonably conclude that: a) the 

two results give the same answer over most of the frequency range, and b) reflections along the 

cochlea can be ignored above Jc f (x l )< which for Liberman’s cochlear map is 91 Hz.

Figure 3.4 shows that in the Koshigoe et al., WKB, and chain-matrix constant scalae area 

model results are not in agreement with the Lynch et al. model based on averaged data. For 

example, at 70 Hz \ZC\ of the theoretical models are below Lynch et al.'s model by a factor of 

more than 6 (15.6 dB). The model phase is 7t/3 larger than the experimental data (in Koshigoe et 

al.'s calculations, the discrepancy in phase is somewhat less).

All models considered thus far have been one-dimensional models, and the possibility remaras 

that in two-dimensional, or even three-dimensional models, the theory and experimental results
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Figure 3.4:

Comparison o f previous models o f Zc having constant scalae area and inviscid 
perilymph (see also Table 2.1): As a verification of the chain-matrix calculations, 
a one-dimensional transmission line model of the cochlea was computed by the 
difference equation (DE) method using the same set of parameters; the two curves 
are indistinguishable from each other. The Lynch et al. phenomenological model 
indicates that Zc is resistive at frequencies above «  400 Hz. The theoretical models 
indicate a mass like behavior at these frequencies. Dallos’ model resembles the Lynch 
et al. model but the physiological mechanisms attributed to Dallos’ helicotrema 
model of Zc(u)  is not consistent with our results (see Fig. 3.3). Also shown are the 
constant scalae area closed form expressions of Zc by Koshigoe etal. (1983), valid for 
frequencies below approximately 1 kHz, and the WKB solution (Allen, 1979), valid 
for frequencies above approximately 1 kHz. This figure shows that the constant scalae 
area model calculations using the chain-matrix can be approximated by Koshigoe et 
al.'s (1983) constant scalae area model for frequencies below approximately 4 kHz 
and by the WKB solutions (Allen, 1979) for frequencies above approximately 4 kHz.
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Fig. 3.4: Comparison of previous models of Zc having constant scalae area and inviscid perilymph
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would agree. Higher dimensional models might be expected to effect the results at higher 

frequencies where the wavelength is shorter. Sondhi (1978) has shown that, for specific model 

parameters and with constant scalae area and zero viscosity, the acoustic input impedance of 

a two-dimensional and a one-dimensional model are identical. Therefore a higher-dimensional 

model does not appear to help. Finally, experimental observations indicate that pressure in the 

scala vestibule, near the base, is relatively independent of depth of the measurement probe into the 

vestibule in the frequency range below 10 kHz (Nedzelnitsky, 1980).

In summary, for constant scalae area and no viscosity, the best approximation to the exact 

calculations by our chain-matrix methods is Koshigoe et al.’s for 30 Hz < /  < 4  kHz and WKB 

fo r  f  > 4  kHz. The parameters considered thus far, namely viscosity, helicotrema, cochlear map, 

and dimensionality o f the model, do not appear to close the gap between theory and measurements.

3.4 Effects of tapered scalae area

The geometry of the scalae is not that of a constant cross-sectional scalae area as has been assumed 

thus far. Wever (1949) and Dallos (1970) have made anatomical measurements of the scalae 

cross-sectional area. To a first order approximation Dallos found the scala vestibule area to be 

exponentially decreasing along the length of the cochlea [i.e. S ( x ) = Soexp(-six)].  Here So 

is the area at the base and si > 0 is the rate of change parameter of the area. In this section 

we consider the effects of the parameters So and si on Zc(u>). In addition, we also analyze the 

interaction of these parameters with viscosity and the helicotrema boundary condition.

3.4.1 Inviscid perilymph

Figure 3.5 shows Zc(u>) in a cochlea without perilymph viscosity (t? =  0) and Liberman's cochlear 

map, as a function of the taper parameter s i . The following observations are made:
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a. There is an overall increase in \ZC\ as tapering increases. For frequencies above Jc f (x l )' 

the LZC decreases as tapering increases, which means that tapering makes the cochlea more 

resistive. Eq. (B.l) shows that the series impedance increases as the area decreases. Thus 

for a fixed So as the tapering parameter increases so does the series impedance. Shera 

and Zweig (1991b) have recently hypothesized that the increasingly resistive behavior of 

Zc, with an increase in tapering parameter is due to an increase in cancellation of the 

mass dominated series impedance Z ’(x,u>) and the compliance dominated shunt admittance 

Y '(x , u ), basal to the characteristic place.

b. As tapering increases, the amplitude of the standing waves seen in Zc increase dramatically 

for frequencies below «  f $ F. As mentioned above as si increases so does the series 

impedance and this results in a larger reflection coefficient at the apical end of the cochlea, 

leading to an increase in the standing wave amplitude.

c. For frequencies below f c F(x i) ,  Fig. 3.5b indicates that Zc is laigely mass dominated.

3.4.2 Viscous perilymph

Figure 3.6 shows the same parameter range for si as Fig. 3.5, but with the perilymph viscosity set 

to the normal value of 77 =  0.02. By comparison with Fig. 3.5 we make the following conclusioas:

a. For frequencies greater than 150 Hz, \ZC\ increases as si increases and is within 1 dB of 

\ZC\ for the no viscosity case, with the corresponding LZC being within 0.05 rr (9°) of the 

no viscosity case. Thus viscosity has only a small effect on the impedance for frequencies 

greater than 150 Hz.

b. For frequencies greater than 150 Hz, Zc becomes increasingly real as tapering parameter 

(si) increases.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



39

Figure 3.5:

The effect o f tapering in a cochlear model with inviscid perilymph (So = 0.02 cm2, 
Zh = SC): This figure shows that Zc is strongly dependent on the change in the 
scalae area. For stimulus frequencies greater than as the tapering parameter
si (cm -1) increases, \ZC\ increases and LZC decreases. This indicates that above this 
frequency, the real part of Z c increases as tapering increases. In addition, as tapering 
increases, the amplitude of the apical reflection also increase for stimulus frequencies 
below TWs is due to an increase in impedance mismatch between the
helicotrema and the scalae, at the end of the cochlea.
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Fig. 3.5: The effect of tapering in a cochlear model with inviscid perilymph
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c. For frequencies below 150 Hz Zc becomes more resistive as tapering parameter si increases 

only for the viscous perilymph case. Therefore viscosity becomes increasingly important 

as the scalae radius in the apical region becomes comparable to the viscous boundaiy layer 

thickness [see Eq. (B.3)].

d. As tapering is increasing, oscillations in Zc due to the end of the cochlear map Jc f (x l ) 

are diminishing for the viscous case; in fact there are no oscillations in Zc for si = 1.8. 

Therefore the viscous boundary layer dissipates the apical reflections.

e. If tapering is increased beyond a certain point for the viscous case, then phase of Zc may 

become negative, indicating a compliant behavior. For example, for sj =  1.8 (arbitrarily 

chosen), the phase is negative for frequencies below 60 Hz. Our interpretation of this 

observation is that the increase in tapering results in the scalae impedance being greater than 

the BM impedance. Thus it is easier for the perilymph to flow “into” the BM than to flow 

down the scala vestibule.

In the above discussions of Figs. 3.5 and 3.6 there are two important frequencies. First, apical 

reflections occur due to the cochlear map limit. This frequency will be referred to as / cf(xl )■ 

Second, viscous effects become important when the viscous boundary layer becomes comparable 

to scalae radius. The frequency where this occurs depends on the scalae radius in the apical region. 

For a fixed So (as in Figs. 3.5 and 3.6) the scalae radius depends on the tapering parameter si. 

The viscous boundary layer thickness is frequency dependent and is proportional to l/%/7 (see 

Appendix B). Thus for a given tapering parameter si the cochlear input impedance will become 

more and more resistive as the frequency decreases.
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Figure 3.6:

The effect o f tapering in a cochlear model with viscous perilymph (t) =  0.02, 
So =  0.02 cm2, Zh =  SC): Above approximately 150 H z Zc is similar to the no 
viscosity case (Fig. 3.5). Below that frequency Zc becomes more and more resistance 
dominated as tapering increases. As tapering increases, the tube radius in the apical 
region becomes more comparable to the viscous boundary layer thickness. Thus we 
conclude that interaction of the reduced radius in the apical region with the viscous 
perilymph gives rise to R 0 in the Lynch et al. model. In addition, as tapering is 
increasing, apical reflection due to the low frequency limit of the cochlear map are 
diminishing. Thus the presence of viscosity dissipates the apical reflections by a 
significant amount.
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Fig. 3.6: The effect of tapering in a cochlear model with viscous perilymph

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



44

If we define f y  to be the frequency at which the viscous boundary layer becomes equal to the 

tube radius then by setting r„ =  1 in Eq. (B.3) we obtain foi = 0.5r)p~lS ~ l(x). For So = 0.0175 

and si = 1.3, fu  is 15 Hz at x  = x i .  Thus near 15 Hz the viscous effects completely dominate. 

However, viscosity will start to have an effect at frequencies greater than 15 Hz. For the purposes 

of discussion we have chosen 150 H z  as the frequency below which viscous effects become 

important. Coincidentally this frequency is close to / c f (x l )• This frequency was chosen based 

on when Zc was more real rather than mass dominated. For these parameters, rv the ratio of tube 

radius to viscous boundary layer is approximately 2.46. If one were to recompute the calculations 

of Fig. 3.6 with f%?F then the effects of viscosity below 150 H z  on Zc would still be observed, 

but without the complications of reflections below / c f (x l ).

Figure 3.7 shows how \ZC\ scales with So for a fixed si =  1.0, and with rj = 0.02. The 

overall shape of \ZC\ is maintained with no significant change in the slope of \ZC\ for each value 

of So. For frequencies above «  f c F{x i), \ZC\ oc Sq 1' and LZC is, to a first order approximation, 

independent of Sq. For large So, v  is a weak function of So- But for So < 0.03 cm2, v  is constant 

and is »  0.87. Thus, given Zc at one frequency and the corresponding So, one can evaluate the 

proportionality constant and therefore find \ZC\ for any other So at that frequency.

3.4.3 Effects o f  the helicotrema with tapering

In Section 3.2 the effects of the helicotrema boundary condition for a constant scalae area model 

were analyzed. In a similar manner we now analyze the effect of the helicotrema in the tapered 

cochlear model. In Fig. 3.8 four possibilities are considered: with and without viscosity (WV.N V). 

and using the two different helicotrema boundary conditions (SC.TI). This gives a four-way 

comparison. By comparison of Fig. 3.5 to Fig. 3.6 we showed that the introduction of viscosiiy 

greatly reduces the low frequency standing waves in a tapered cochlea. Figure 3.8 shows that
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Figure 3.7:

The effect o f So in a cochlear model with tapering parameter si fixed (s\ =  1.0, 
Zh — SC): For frequencies above «  /c fC ^ l) . scaling S(x) (i.e. by decreasing So) 
effectively results in a proportional translation in \ZC\ with only a small effect on LZC 
. For this case \ZC\ a  Sq u, where v  a  0.87 (see text).
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Fig. 3.7: The effect of So in a cochlear model with tapering parameter si fixed
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changing the helicotrema boundary condition from SC to TI, in the zero viscosity case, has the 

effect of reducing the magnitude of the oscillations in Zc but its effect is not as great as that due 

to viscosity alone. In addition, for frequencies below 150 Hz, Zc is resistance dominated in the 

viscous perilymph case and it is mass dominated when perilymph viscosity is zero. Introducing 

a TI boundary condition when perilymph viscosity is already present has little effect on Zc. We 

therefore conclude that in the tapered cochlea, the effects due to the viscous perilymph are more 

significant than the effects due to the acoustic impedance o f the helicotrema. Unless otherwise 

stated all further calculations of Zc will be assumed to be with r) = 0.02 and Zh = SC.

3.5 Comparison of tapered scalae area cochlear models

The Koshigoe et al. model, is the only model in Table 2.1 that includes the effect of tapering. But as 

they stated in their paper: “In our approximate analysis, apical reflections are ignored” (Koshigoe 

et al., 1983, p. 488). Thus their analytic method does not lend itself to the type of analysis we have 

established in the previous sections where apical reflections can be of considerable importance.

Figure 3.9 compares, for the same set of parameters, our results for the acoustic input impedance 

with those of Koshigoe et al.’s numerical calculations. In this figure only, Aq was adjusted to 

match Ko used by Koshigoe et al.. Measured data and Koshigoe et al.’s numerical calculations 

assume a round window stiffness K rw  The round window impedance ZTW(u>) = K TW/s  adds to 

the cochlear input impedance as a series impedance (Nedzelnitsky, 1980):

Z„ w{u) = ^  + Zc(u>). (3.5)

Nedzelnitsky (1980) concluded that the effect of the round window, in the cat, is important for 

frequencies below «  300 Hz. To fit \ZC\ for frequencies below 40 Hz, where Zc = Zrw, Lynch et
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Figure 3.8:

The effects o f the helicotrema and perilymph viscosity in a tapered cochlear model 
(So =  0.02,si =  1.0): As shown here, and in Figs. 3.5 and 3.6, the introduction of 
viscosity (WV) virtually eliminates the apical reflections that result in the standing 
waves. A tube impedance (TI), in the no viscosity case, reduces the apical reflections 
but its effect is not nearly as great as that due to viscosity alone. For frequencies less 
than approximately 150 H z, the phase indicates that Zc is resistance dominated only 
when viscosity is present. Thus when tapering and viscosity are present, a TI model 
of the helicotrema has a negligible effect.
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Figure 3.9:

Comparisons o f measured data and cochlear models with tapered scalae area: The 
impedance of the round window ZTW(u) has now been added to the model calculations 
of Zc(u>). The sum of these impedances is referred to as ZcrW(u>). Koshigoe et 
al.'s numerical results (their analytical approximations) are from their Figs. 1 and 2. 
Parameters for both models are: Sq = 0.02, si =  1, K q =  109, tj = 0.02, Zh =  SC , 
and the round window stiffness K rw is 108. In the chain-matrix model, Liberman’s 
cochlear map was used. In Koshigoe et al.’s calculations, an exponential stiffness 
was assumed. “Av cat data” is from Lynch et al. (1982). Although the chain-matrix 
calculations are in better agreement with the data than the Koshigoe etal. calculations, 
discrepancies still exist. For example for frequencies above 500 Hz the discrepancy 
in phase is as large as j7r (60°) and for frequencies below 1 kHz the discrepancy in 
magnitude is as large as a factor of 2.5 (8 dB). (Note the change in magnitude scale 
from previous figures).
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Fig. 3.9: Comparisons of measured data and cochlear models with tapered scalae area
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al. (1982) chose a value of 108 dyn/cm 5 for the round window stiffness. Unless otherwise stated 

we will use this value for the round window stiffness. This value of the round window stiffness 

has an effect on the phase for frequencies up to 70 Hz. Thus, when referring to effects above 70 

Hz we will use Zc and ZCTW interchangeably. Unless otherwise stated, all further calculations in 

this section will include K rw-

From Fig. 3.9 , despite a similar choice of parameters, the chain-matrix model and Koshigoe 

et al.'s model show a ratio of up to 1.7 (4.6 dB) between 0.1 and 8 kHz. The two most obvious 

explanations for the differences between our and Koshigoe et al.'s results is that the Koshigoe et 

al. solution is an approximation solution, while our chain-matrix solution is an exact numerical 

solution. This approximation has two parts. The first is that our numerical solution includes a 

forward and backward traveling wave, whereas' Koshigoe et al.'s method includes only a forward 

traveling wave. Specifically, the Koshigoe et al. model ignores reflections due to scalae tapering 

and apical reflections. Second is the approximations for the series impedance they make in finding 

the solutions.

There is also a significant difference between the conclusions arrived at by the chain-matrix 

method and those of Koshigoe et al. For frequencies above 150 Hz, we have presented evidence 

that the low frequency increase in \ZC\ is independent of viscosity and is due only to tapering. For 

frequencies below 150 Hz, the phase indicates that Zc is resistance dominated due to presence of 

both viscosity and tapering, independent of the helicotrema impedance. Koshigoe et al., on the 

other hand, argue that it is viscosity alone that is responsible for the rise in \ZC\ below 500 Hz.
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3.6 Comparison with measured data

Figure 3.9 compares averaged Z crw obtained by scala vestibule pressure and stapes velocity 

measurements in anesthetized cats (Lynch et al., 1982) with our model calculations of Zcrw (in 

Lynch et al. Zcrw is reffered to as Zc). There is some agreement in \Zcrw\ for frequencies above 2 

kHz but poor agreement in LZ„W above 500 Hz. For frequencies below 200 Hz, our theoretical 

calculations match measured LZcrw quite well. But our model \Zcrw\ is below the average data 

by as much as a factor of 2.5 (8 dB) in the frequency region between 30 Hz and 1 kHz. Lynch et 

al. estimate their experimental worst-case error to be ±  10 dB; however, the “actual measurement 

errors are likely to be substantially smaller than these worst-case estimates of error lim its"  (Lynch 

et al., 1982, p. 113). Shera and Zweig (1991b) have recently made minimum-phase fits to the 

amplitude and phase of the Lynch et al. data. Their calculations indicate that the data stays 

minimum-phase for approximate deviations of ±2 dB in amplitude and ±10° in phase. Thus 

although the measurement errors are not exactly known we assume that they are sufficiently small. 

This indicates that the parameters chosen to calculate our model results need to be re-evaluated.

3.6.1 The appropriate geometric representation

As mentioned previously, the most important parameter that affects the cochlear input impedance 

is the scalae area function. Thus in this section, we further explore the effect of S( x) on 

Zc(lj). Figure 3.10 shows the various area functions that we use next to calculate Zc(w). To our 

knowledge the only anatomical measurement of the area function for the cat scala vestibule is one 

by Dallos (1970). The So = 0.02 cm2 and si = 1 cm-1 curve is the approximate fit made by 

Dallos to the measured area function; this is the approximation that we have used to this point 

The So = 0.0175 cm2 and si =  1.3 cm-1 curve is a second approximation to the measured area
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function. Discussion of the Sm(a;) curve is deferred for the moment. The effect of each of these 

area functions on Zc(u)  is shown in Fig. 3.11.

For frequencies below 1 kHz, we see that a better fit to \Zcrw\ is obtained with So = 0.0175 

cm2 and si =  1.3 cm ~l than with So = 0.02 cm2 and si = 1 cm-1 . However even with this 

area function, our match to averaged phase is still poor for frequencies above 400 Hz. In the 

experimental data, the phase starts to decrease near 300 Hz becoming negative near 500 Hz and 

it stays negative for frequencies up to 2 kHz. Above 2 kHz, the phase is approximately zero, 

indicating that Zc is more or less resistive. The model ZCTW, on the other hand, approaches zero 

phase gradually, still having an angle of 7r/10 radians at 10 kHz. Near 5 kHz there is also a 

systematic error in \Zcj, becoming as large as 1.8 (5.1 dB) at high frequencies. Since we have 

shown that the geometry of the cochlea has an important effect on Zc, perhaps representing S(x)  by 

an exponentially tapered function is not a sufficient approximation for the purposes of accurately 

calculating the input impedance. Figure 3.11 shows calculations of ZCTW using Dallos’ measured 

area function of the scala vestibule, which results in an input impedance that is not significantly 

different from the one obtained with So =  0.0175 and si = 1.3. Therefore, the errors as stated 

above persist.

The scala vestibule area measured by Dallos is for one cat only. In addition, an error bound on 

the measurement was not provided by Dallos. To better fit the average cochlear input impedance 

data, we have tried slight perturbations (less than a factor of two) to the measured area function. 

In the apical region the So =  0.0175 and si = 1.3 curve has a smaller area than the So = 0.02 and 

si =  1 curve. Since the former area function results in a better fit, we have decreased the measured 

area in the region apical to 0.9 cm; with the exception of the 1.6 cm region, where the area was 

slightly increased. Figure 3.10 shows that the net effect of these changes results in an area function
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Figure3.10: Anatomical measurements o f cat scala vestibule area S(x): The basal end corresponds 
to x  =  0 and the apical end of the cochlea corresponds to ar =  2.5 cm. The circles indicate 
anatomical measurements in one cat (Dallos, 1970). The curve with So = 0.02, si = 1 is an 
approximate fit to the measured area function (Dallos, 1970). The curve with So =  0.0175, si = 1.3 
is another approximate fit to the measured area function. Sm(x) is Dallos’ area function 
heuristically modified (see text) to obtain a better fit to measured Zcrw(u).
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Figure 3.11:

ZCrw(u) corresponding to the area functions o f Fig. 3.10: Going from the So = 
0.02, sj =  1 curve to the So =  0.0175, sj = 1.3 curve results in a better agreement 
between the calculated Z „ w(tjj) and the measured data. Using the actual measured 
area function of Dallos yields only a slight improvement. When Dallos’ area function 
is heuristically modified as in Sm(x) of Fig. 3.10 , then there is a better agreement 
between the calculated ZCTw(u) and the measured data. The decrease in phase near 
300 Hz is due to the local maximum in the area function Sm(x) apical to x = 0.9 cm. 
K Tw = 10® (Lynch etal., 1982) for all four cases.
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Fig. 3.11: Z „ w(u) corresponding to the area functions of Fig. 3.10
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with a local maximum in the apical region of the cochlea. One important motivation for making 

these changes comes from the observation that the scalae vestibule area function measurements are 

not monotonically decreasing in the human cochleae (Wever, 1949, pp. 276-278) (see Fig. 3.14). 

Figure 3.11 shows that this local increase in the area function gives rise to a sharp decrease in 

phase above approximately 300 Hz. From Fig. 3.10 we note that there are no area measurements 

in the 0.1 < x < 0.85 cm  region. Perhaps the area function in this region cannot be approximated 

by an exponential function as we have assumed. Based on our experience with perturbations of 

the area at the x  =  0.5 cm  point, we have increased the scalae area by a factor of 1.5 at that point. 

The result of increasing the area near the x = 0.5 cm  region is to decrease the magnitude and 

phase of Zc above the 3-4 kHz region, which is consistent with the measured Zc data. The area 

function with the modifications described above is reffered to as S m(x)  in Fig. 3.10. The input 

impedance corresponding to S m(x) is shown in Fig. 3.11. The resulting cochlear input impedance 

calculations are in very close agreement with those o f the averaged measured data.

3.6.2 Effect of transducer placement

In calculating the load to the middle ear, one should use the pressure in the scala vestibule at the 

stapes -  as we have done thus far. However, for comparison to measured Zc data, one should use 

the pressure inside the scala vestibule in the vicinity of the transducer. Thus we need to know 

the location of the transducer relative to the stapes. Figure 3.12 shows the results of evaluating 

Eq. (2.10) at various locations near the stapes, i.e. use P (xo) instead of P(0). For frequencies 

below 1 kHz there are virtually no differences in \ZCTW\ and LZCTW as a function of x0, which 

we define as the distance from the stapes. But for frequencies above 1 kHz, large differences in 

LZcrw exist as a function of xo. Figure 3.12 shows that the phase decreases with an increase in 

x q . Individual cat data (Lynch et al., 1982) in Fig. 3.13 display negative phase for some o f  the
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high-frequency data points. A change in xo is one model parameter that results in a negative phase 

above 2 kHz. This distance is most likely to be difficult to measure experimentally, and was not 

reported by Lynch et al. (1982). However, Figure 2 of Lynch et al. (1982) suggests that xo < 0.2 

cm. To calculate the model result show in Fig. 3.13 we have chosen xo =  0.15 cm.

3.7 Inter-animal comparison with the chain-matrix model

Up to now we have been using the Lynch et al. averaged Zc data. The parameters used thus far 

have proven to capture some of the detail present in the averaged Zc data. Since averaging of 

data smears out details, we now wish to compare our results with the individual measurements 

from which the averaged data was obtained. Figure 3.13 shows the four measurements of Zc on 

individual cats by Lynch et al. (1982). It is apparent from Figure 3.13 that the individual cats 

show a large amount of inter-animal variability. Some of the trends present in the averaged data 

are more pronounced in each of the individual curves. For frequencies above 1 kHz, the individual 

phase is positive and negative across animals and would tend to average to zero, leaving a real 

result. Thus for any given animal, Zc is not necessarily real at frequencies above 1 kHz.

The model results shown in Figure 3.13 are obtained by using parameters from the previous 

sections. The parameters used are: Sm(x)(seeFig. 3.10), pressure measured at location xo = 0.15 

cm, T) = 0.02, Zh = SC, A'o = 1.7 x 109. The round window stiffness K TW was increased to 

1.2 x 108. A comparison with individual data shows good quantitative agreement. From our 

modifications to the area function, albeit in a heuristic manner, we have been able to capture 

some of the detailed structure of the cochlear input impedance. From this exercise we reach the 

conclusion that individual animal differences in the scala area result in measurable differences in 

the cochlear input impedance. It was noted that for frequencies above 1 kHz, the inter-animal
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Figure 3.12:

The effect on Z „ w[w) o f placing the pressure transducer at distances xo apical to the 
stapes: The major effect of placing the pressure transducer at different location along 
the length of the cochlea is in the phase [S(z) = 5m(x)].
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Fig. 3.12: The effect on Zcrw(a;) of placing the pressure transducer at distances xo apical to the
stapes
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Figure 3.13:

Comparison with Lynch et al.’s measured data: “cat27”, “cat25”, “catl8”, and “cat7” 
are measurements of ZCTW(ui) on individual cats (Lynch et al., 1982). The “Av cat 
data” shown here and in previous figures were obtained by Lynch et al. by averaging 
the individual curves. The individual data shows significant inter-animal variability. 
For frequencies greater than 1 kHz, the measured phase is distributed on both sides 
of zero. This indicates that the individual animal phase is not necessarily resistive, at 
frequencies above 1 kHz, as one would be lead to believe by looking at the phase of the 
averaged data. From the present study we conclude that one reason for the inter-animal 
variability in cochlear input impedance is due to inter-animal differences in the scalae 
area. Calculation parameters are: 5m(x), A' I  = 1.7 x 109, K Tw =  1.2 x 10®, and 
xo =  0.15 cm.
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Fig. 3.13: Comparison with measured data
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phase is both positive and negative; this variation is most likely due to inter-animal differences in 

the basal region of the scala vestibule area function, variations in transducer placement, or perhaps 

errors in animal measurements.

3.8 Extension to other species

To accurately compute the cochlear input impedance we have proposed a cochlear model that 

requires the specification of species dependent parameters such as: the area function of the 

vestibule, the cochlear map / c f (x ), the length of the cochlea x l , the BM width function 0{x),  

the round window stiffness K rw, and the area of the footplate A j p. In addition, one also needs 

to specify the physical constants for the perilymph such as: viscosity i), and the density p. The 

parameters chosen thus far were for calculating the cochlear input impedance of the cat. Given the 

model, we now compute the cochlear input impedance for the guinea pig, man, and the chinchilla, 

and compare our results to those of the cat, for frequencies up to 70 kHz.

The human cochlear map according to Greenwood (1961) is

f P F ( x )  =  165.4 10*/.
(xL-x)

- 1

the guinea pig cochlear map (Greenwood, 1990) is

/& ( * )  =  350

and the chinchilla cochlear map (Eldredge et al., 1981) is

/& (*) = H2.5

(3.6)

(3.7)

13 Hi

The area functions for the cat [Sm(x) of Fig. 3.10],human(Wever, 1949), guinea pig (Dallov
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Parameter cat guinea pig chinchilla man units
XL 2.5W 1.85W 1.841*1 3.5^ cm
H b  1 0.146 0.161 0.137 0.254 cm
00 0.01 lM 0.01 M 0.0231*1 0.0151*1 cm
0\ 0.56^1 0.375t6l 0.3W 0.3291*1 cm-1
ah 0.0125W 0.0084tel 0.02481*1 cm
lhU] 0.04 0.0284 0.078 cm
A fp 0.0126^ 0.014W 2cm
Krtu 10®M dyn /cm s

1.7 x 109 8.3 x 108 4.5 x 10* 2.4 x 108 dyn/cm.3

“Liberman (1982)
6Fem4ndez(1952)
'Eldredge et al. (1981)
‘'von Bdkdsy (1960)[p 29]
'Dallos (1970)
^Cabezudo (1978)

SH =  2^f 
hWever(1949)[p 100]
'Mulroy (Lynch et al., 1982, note 11) 
(it, = trah 
Lynch et al. (1982)

Table 3.1: Species dependent parameters:
For chinchilla and man A j p of the cat were used. K'Q is the basilar membrane stiffness at the base. 
Anatomical parameters for the helicotrema are not required for man, guinea pig, and chinchilla 
model calculations since a short circuit helicotrema impedance was used; they are listed here only 
for comparison to the cat.

1970), and the chinchilla (Dallos, 1970) that we have used are shown in Fig. 3.14. Since round

window stiffness measurements for some of these animals are not available, we make comparisons

of Zc rather than ZCTW. For this reason, comparisons of our calculated results with measurements

of Zc reported in the literature are meaningful only for frequencies above «  70 Hz. Figure 3.15 

compares Zc for cat, human, guinea pig, and chinchilla cochleae in the frequency region between 

10 Hz and 70 kHz given the areas shown in Fig. 3.14. The BM stiffness K '(x )  was modified for

other species, as in the case for the cat, so that the calculated cochlear map coincided with the

actual cochlear map of either Eq. (3.6), Eq. (3.7), or Eq. (3.8). The species dependent physical

parameters, including the BM stiffness at the base K'0, are shown in Table 3.1.
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Figure 3.14: Inter-species comparison o f anatomical measurements o f the scala vestibule area: 
The cat area labeled Sm(x) is from Fig. 3.10 . The human scala vestibule area is from (Wever. 
1949). The guinea pig and chinchilla area measurements are from Dallos (1970). The human 
scala area is the iaigest and the guinea pig scala area is the smallest.
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3.8.1 Human impedance

Our model calculations (Fig. 3.15) show that below 1 kHz the human cochlear input impedance 

slope is approximately 4 dB/oct, teaching a peak at 1.2 kHz of 1.24 A ffi. Between 1.2 kHz 

and 10 kHz the model \ZC\ starts to decrease with an approximate slope of - 6  dB/oct. In 

comparison, the cochlear input impedance magnitude measured on human temporal bones, is “flat" 

for 0.6 kHz < f  <2.2  kHz, and the mean value on eleven temporal bones is 0.7 A /fi at 1 kHz 

(Aritomo and Goode, 1987). Estimates of the measurement error are not reported in (Aritomo and 

Goode, 1987). Thus at 1 kHz our | Zc\ is higher than the measured data by a factor of 1.8 (5.1 dB).

3.8.2 Guinea Pig impedance

The only reported measurements of guinea pig impedance have been by Dancer and Franke (1980). 

Since phase measurements were not reported in that study, we compare our theoretical results 

with their magnitude measurements. Franke and Dancer estimated the impedance from pressure 

measurements in the first turn of the scala vestibule. In the frequency region between 200 Hz and 

2 kHz the measured impedance magnitude is approximately 0.4 A ffi. The slope of the measured 

impedance is approximately 5 dB/oct for the frequency region between 2 kHz and 5 kHz, and 

the impedance is approximately 0.8 M il  near 5 kHz. Above 7 kHz the measured impedance 

magnitude is approximately 0.4 A ffi. Figure 3.15 shows that this estimate of the magnitude of 

the impedance is smaller than our theoretical calculations by as much as a factor of «  6 (15.6 

dB). From Franke and Dancer (1980) Fig. 2, we estimate that their “confidence interval" of 95% 

corresponds approximately to a measurement error of ±6 dB. Even with this measurement error 

our results seem to be outside the range of experimental error.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



68

Figure 3.15:

Inter-species comparison and high-frequency effects o f Zc(u): For frequencies just 
above f max =  / c f ( x =  0 )» %c becomes completely mass dominated for all four 
animals. This is a predictable result, since the mass of the fluid and mass of the oigan 
of Corti dominates in that frequency region. However, the sudden decrease in | Zc\ for 
«  10 kHz < f  < fmax is unexpected. Human Zc is lowest in magnitude, due to its 
relatively large scalae area, and the guinea pig Zc is largest in magnitude due to its 
relatively small scalae area. Since the human scalae area in the apical region is larger 
than the other animals, the viscous boundary layer is not as significant for human Zc 
as it is for the other animals at low frequencies (below 150 Hz). Thus the human Zc 
is more mass-like than the other animals studied, as may be seen by the phase. The 
corresponding scalae areas are shown in Fig. 3.14 . The other model parameters are 
listed in Table 3.1 (7? =  0.02, Zh = SC).
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Fig. 3.15: Inter-species comparison and high-frequency effects of Zc(u>)
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3.8.3 Chinchilla impedance

Recently Ruggero et al. (1990) have reported measurements of Zc for the chinchilla. They found 

an impedance of approximately 0.5 -  0.9 M il  in the 1 kHz < /  < 15 kHz frequency region, 

and the impedance decreases with an approximate slope of 7 dB/oct below 1 kHz. Our model 

calculations are greater than the reported values by as much as a factor of 4.4 (12.9 dB). The 

measured phase decreases from approximately x /4  at 300 Hz to approximately tt/8  at 3 kHz, in 

agreement with our calculations. However, for 3 kHz < /  < 18 kHz, the measured phase starts 

to increase towards ir, whereas the model phase continues towards zero. The model phase is tt/2 

for /  > 20 kHz. In Ruggero et al. (1990) the maximum measurement error was not reported. 

Note that fc hF is a straight cochlear map but oscillations in Zc in the model were substantially 

reduced due to the presence of viscosity and tapering.

3.9 Inter-species comparisons

For stimulus frequencies below 10 kHz, it is observed that of the four species studied, the human 

impedance is the lowest in magnitude while the guinea pig impedance is highest in magnitude. 

For the most part, the human scalae area is greater than the other animals, and the guinea pig 

scalae area is smaller. These results are consistent with our previous observation (Fig. 3.7 ) that 

the impedance magnitude is inversely proportional to the scalae area.

3.9.1 Low frequency effects

In the previous sections we concluded that the resistive behavior of Zc below 150 Hz is due to the 

interaction of tapering with viscosity. Since the area in the apical region of the human cochlea is 

significantly larger than other cochleae, the viscous boundary layer thickness is less significant in
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the human cochlea; thus the human cochlear input impedance is not as resistive at low frequencies 

as the other animals studied.

3.9.2 High frequency effects

For 10 kHz < /  < /max. where f m ax  =  / c f ( x  = 0), there is a “dip" or decrease in the 

impedance for all four species. To our knowledge this decrease in model impedance has not been 

previously observed. In all four cases, Zc abruptly becomes mass dominated for frequencies above 

/m ax  of the cochlear map. For the cat, man, guinea pig, and chinchilla this occurs at / m„x «  37, 

20.7,43.8, and 19.6 kHz. Based on heuristic arguments, this mass-dominated region was modeled 

as M v  in (Lynch et al., 1982, Fig. 23). In the chain-matrix model, the high-frequency effects of 

the perilymph fluid mass and organ of Corti mass arise in a natural manner.

We shall refer to the decrease and then the increase in \Zc(u)\, at the highest frequencies, 

as the anti-resonance of Zc. This anti-resonance can be quantified by analyzing Z 0(x ,u )  the 

characteristic impedance of the cochlea [see Eq. (2.6a)]. Since at high frequencies viscous 

effects are insignificant we shall carry out the analysis for the inviscid case. If we substitute the 

approximate form l /Y '( x ,u )  = HZt,m(x,u))/So  =  ^ [ K (x ) /] u  + R (x) +  M (x)ju]  for the BM 

shunt impedance, and Z ' =  for the series impedance, then the characteristic impedance, at 

the stapes (denoted by subscript “0”), after some simplifications, is

Zoo(cj) = Z0(x = 0,w) =
'2pH(Kp  -  w2Mp +  jw-Rq) 

50
(3.9)

It can be shown that Eq. (3.9) reaches a minimum when u  =  wo =  at that frequency the 

magnitude of the characteristic impedance is

'2pHRoJW0'
(3.10a)
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while the phase of Zoq is x /4 . Note that wo occurs at 2 r r F o r  frequencies below the 

anti-resonance frequency

|£ o o |u « u o
2pH K 0 \

(3.10b)
Sq

at those frequencies the phase of Z0o indicates that the characteristic impedance is real. At the 

very high frequencies

\Z0o\uj»ua ~  W
IpH M o

So

I
(3.10c)

with a phase of rr/2, indicating that Z m  is mass dominated at the highest frequencies.

Most cochlear input impedance measurements have been for frequencies below 20 kHz. 

A way of verifying these high frequency results would be to make cochlear input impedance 

measurements up to and beyond f max of the cochlear map of the specific animal being studied. An 

important reason for making such measurements is that it would then be possible to extrapolate, 

within a scale factor, BM parameters such as the stiffness K q, the mass Afo, and damping parameter 

Ro, at the stapes.

Another reason is that if it could be measured, the sharp transition in Z c near f max of the 

cochlear map would appear to be a sensitive test of a traveling wave in species such as the tunle 

or the lizard, where the traveling wave properties are in question.

3.10 Discussion

Standing waves exist when there are reflections at both the stapes end and the apical end of 

the cochlea. The problem of apical reflections has been analyzed in detail. We conclude that 

the magnitude of apical reflections can be eliminated by using a cochlear map of the form 

I c f ( x ) = A  [10=T{— 4) -  1 ]. Alternatively, the amplitude of the apical reflections can 

be substantially reduced by properly accounting for scalae area variations and viscosity in the
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cochlear model. In such a model, the apical reflections are dissipated by the viscous boundary 

layer when it is comparable to the tube radius in the apical region of the cochlea. Eliminating 

apical reflections obviates the need for an “infinite length" cochlear model. In addition, potential 

artifacts due to standing waves in non-linear time-domain models can be controlled by eliminating 

apical reflections.

By modeling the cochlear input impedance, important insight has been gained regarding 

mechanisms of the cochlea. Specifically, we have shown that the scalae area function S{x)  of 

the cochlea is important when one is interested in accurately calculating Zc(u). The effect of 

viscosity is significant for frequencies below those where the viscous boundary layer thickness is 

comparable to the radius of the scalae in the apical region. For the cat, chinchilla, and guinea pig, 

this occurred at approximately 150 H z. The helicotrema boundary condition has been a point of 

conjecture in cochlear mechanics. We have shown that the helicotrema acoustic impedance has an 

insignificant effect on Zc(w) in comparison to the effects of tapering and viscosity. We conclude 

that the helicotrema can be approximated as an acoustic short circuit without altering cochlear 

dynamic results, assuming tapering and viscosity are properly accounted for in the cochlear model. 

Traditionally the helicotrema is considered to be the small hole at the apex of the cochlea. However, 

our model calculations show that acoustically, the helicotrema extends well into the cochlea.

In answer to the question: What physical mechanisms give rise to R 0 of Fig. 2.1? We conclude 

that tapering increases the impedance magnitude and inclusion of perilymph viscosity results in 

the impedance becoming real as /  —<• 0. For the cat, chinchilla, and guinea pig the impedance is 

dominated by the real component for frequencies below approximately 150 H z. Therefore the 

notion that the input impedance depends only upon the properties of the BM close to the stapes, 

such as in the WKB approximation, is not consistent with the results derived in the present work
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Stated in other terms, the reflected wave component is an important and a necessary part of the 

cochlear input impedance calculation.

We have shown that accurate calculations of the cochlear input impedance requires accurate 

specifications of the scala vestibule and scala tympani area functions. A further verification of 

this result would require more cochlear input impedance measurements along with corresponding 

anatomical measurements of the area functions.

Sondhi (1981) conjectured that it is possible to gain insight about important BM parameters, 

such as the BM stiffness function K(x) ,  from Zc(u). Testing this idea, with a constant height 

cochlear model, did not prove to yield physically reasonable results for the stiffness function 

(Sondhi, 1988). Alternatively, under the assumptions of full knowledge o f the BM stiffness K( x)  

derived from the cochlear map, it might be possible to recover the area function S(x)  from the 

input impedance measurements by Sondhi’s acoustic inverse method.

3.11 Summary

A non-uniform transmission line model of the cochlea is formulated as a cascade of two-port 

chain-matrices. This model includes the effects due to the spatial variations in scalae area, the 

viscous perilymph, spatial variations in the basilar membrane partition, and the impedance of the 

helicotrema.

Figure 3.16 graphically depicts some of the main points of this chapter. The curve with 

(S=0.0167 cm2) is the only curve with constant scalae area. The other curves are with an area that 

is a close approximation to anatomical measurements of the scalae area S m(x),  It is clear from 

Fig. 3.16 that, for frequencies below about 1 -2 kHz, the magnitude of the cochlear input impedance 

with a constant scalae area diverges from the model calculations with realistic scalae area. For
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Figure 3.16:

Summary o f results: Zc(u)  with constant scalae area, no viscosity, and a helicotrema 
short circuit is labeled as (S=0.0167,NV,SC). The sudden jump in Zc near 100 Hz 
is due to apical reflections resulting from the low frequency limit of the cochlear 
map / c f (x l )• The other calculations of Zc use the more realistic scalae area 
of Fig. 3.10. For frequencies below about 1-2 kHz the constant scalae area model 
magnitude of Zc diverges from the model calculations with realistic scalae area. 
For all cases having scalae area Sm(x), model results are in good agreement with 
measured data for frequencies above 150 Hz (see Fig. 3.13). Below / c f (x l )< 
the large oscillations in Ze are due to apical reflections. Adding a tube impedance 
(TI), for the helicotrema, has the effect of changing the nature of the reflections, but 
it fails to remove them. After including perilymph viscosity (WV), two important 
result emerge for frequencies below 150 Hz: First, the phase indicates that Zc is 
resistance dominated. Second, the apical reflections have dissipated. Viscous effects 
are important when the scalae radius becomes comparable to the viscous boundary 
layer.
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Fig. 3.16: Summary of results
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frequencies above ISO Hz, there is good quantitative agreement between the data and our model 

calculation with a realistic scalae area (see Fig. 3.13 ). The amplitude oscillations in Zc below 

Jc f (x l ) 316 Present in both the constant scalae area model and the model with the realistic scalae 

area. These oscillations indicate the presence of apical reflections. In the realistic scalae area 

case, the magnitude of the reflections are much greater due to an increase in impedance-mismatch 

between the scalae and the helicotrema. Although adding a tube impedance, for the helicotrema. 

affects the nature of the apical reflections it fails to remove them. When perilymph viscosity is 

included in the model, two important effects are observed for frequencies below 130 Hz: First, 

the impedance starts to become more and more resistive as frequency decreases. Second, the 

apical reflections have dissipated. These effects are due to the viscous boundary layer becoming 

comparable to the scalae radius in the apical region of the cochlea.
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Chapter 4

Modeling the “surgically modified” 
middle ear

Introduction

A signal presented in the ear canal is transmitted through the middle ear to cochlea, and then to 

the auditory nerve. In addition it is now known that a small fraction of the energy measured in 

the earcanal has its origin in the cochlea. In both cases the middle ear is the structure that serves 

as an interface between the air-filled ear canal and the fluid-filled cochlea. As stated in Chapter 

2, in order to understand the bidirectional flow of energy in the cochlea, it is necessary to have a 

good model of the middle ear and of the cochlear input impedance. The later was the subject of 

Chapters 2 and 3. In the present Chapter both mechanistic aspects as well as functional aspects of 

the middle ear are investigated.

Middle ear mechanics goes as far back as the time of Helmholtz (1883). He based many of 

his conclusions on measurements and observations of the middle ear anatomy. Further studies 

that characterize the mechanical interconnections of the middle ear ossicles to the eardrum and 

cochlea were made by von Bdkdsy (1960), Wever and Lawrence (1954) and others. In addition 

to anatomical and mechanical descriptions many other forms of measurements have become

78
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available on humans and other animals since the time of Helmholtz. These include measurements 

of earcanal impedance, umbo velocity, stapes velocity, etc, resulting in an evolution of middle ear 

models.

An important noninvasive measurement is the earcanal impedance. Middle ear models based on 

earcanal impedance measurements have been abundant in the hearing literature (Zwislocki, 1957; 

Onchi, 1961; Moller, 1961; Flanagan, 1962; Zwislocki, 1962; Moller, 1965; Shaw and Stinson, 

1981; Lynch, 1981; Shaw and Stinson, 1983; Tonndorf and Pastaci, 1986; Matthews, 1983; 

Kringlebotn, 1988; Shera and Zweig, 1989). However, accurate earcanal impedance measurements 

above 6-8 kHz have been sparse. To our knowledge impedance measurements near the cat 

tympanic membrane made by Allen (1986) are the only ones that go as high as 33 kHz. Similar 

measurements by Lynch (1981) are for frequencies below 20 kHz, and by Tonndorf and Pastaci 

(1986) for frequencies below 15 kHz.

Our goal of middle ear modeling is to obtain a model that accurately describes the mechanics of 

the physiological system. Lumped-element modeling provides a readily interpretable framework 

for modeling middle ear mechanics (Onchi, 1949; Zwislocki, 1957; Moller, 1961). Given the 

driving point impedance at the eardrum we will obtain parameters that characterizes the measured 

data. In a typical middle ear model there are many parameters that need to be estimated. One 

possible methodology, to “uniquely” estimate parameters, is to make “surgical modifications" 

along the. ossicular chain and cochlea. Measurements by Allen (1986) have been made with 

“surgical modifications” in a systematic manner. Thus his data will be used to model the 

mechanical properties of the eardrum and ossicles.

The organization of this Chapter is as follows: To acquaint the reader with the literature we first 

introduce an anatomical representation for the cat middle ear. Subsequently, a phenomenological
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representation and then a corresponding specific circuit for the middle ear is presented. Next the 

impedance data is presented in increasing order of complexity, from which parameters for the 

model will be extrapolated. First the “interrupted incus” data are modeled. Next the “drained 

cochlea” data are modeled. Finally the “intact" data are modeled using parameters from the 

previous two models and results for the cochlear input impedance from Chapter 3. Subsequent 

to this the cat middle ear cavities are modeled using the chain-matrix method (validation of the 

chain-matrix model for a cavity is deferred until Chapter 5). The model for the middle ear cavities 

is combined with the eardrum impedance model to obtain a comprehensive model of the cat middle 

ear.

4.1 The middle ear model

The middle ear serves to couple acoustic energy of the ear canal to the cochlea. This coupling is 

necessary because there is an acoustic impedance mismatch between the air filled ear canal and 

the much higher impedance of the fluid filled cochlea. Figure 4.1 shows a simplified anatomical 

representation for the cat middle ear. In this figure the Pinna Flange and external auditory meatus 

have been resectioned.

Acoustic energy in the earcanal sets the eardrum in motion. Motion of the eardrum is 

transmitted to the cochlea by three bones, known as the ossicles. They are called the malleus, 

incus, and stapes. Motion of the eardrum causes the malleus to move, resulting in a rotational 

motion of the incus. The force produced by the incus at the stapes results in a piston like motion of 

the stapes footplate (oval window). This sets the cochlear fluids into motion. The cochlea fluids 

and the organ of Corti are assumed to to be incompressible; thus volume displacement of the oval 

window results in an equal volume displacement of the round window located in the bulla cavity.
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Figure 4.1: Simplified anatomical representation o f the cat middle ear: Sound pressure difference 
between the ear canal and the tympanic cavity results in motion of the eardrum (tympanic 
membrane). This results in motion of the three ossicles malleus, incus, and stapes. The malleus 
and the incus are suspended from the tympanic cavity walls by the superior ligament o f malleus and 
superior ligament o f incus. There are other ligaments that connect the ossicles to the cavity walls, 
but for the sake of simplicity they are not shown in this figure. The tympanic cavity is connected 
to the bulla cavity by a small opening called the foramen; this opening is formed by the bony 
septum. The Eustachian tube is shown in its normally closed position. Impedance measurements 
are made by placing a microphone/receiver transducer assembly close to the tympanic ring.
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4.1.1 Phenomenological representation

To better quantify the above description, a phenomenological representation of the cat middle ear 

anatomy is shown in Fig. 4.2 . This model is intended to capture details of middle ear mechanics 

from impedance measurements made at the tympanic membrane (TM). Difference between the 

model of Fig. 4.2 and previous middle ear models of Zwislocki (1962), Lynch (1981), Shaw and 

Stinson (1981), Matthews (1983), and others is that in present model the pressure seen by the 

round window is that of the bulla cavity rather than the tympanic cavity. There are topological 

similarities between the model of Fig. 4.2 and middle ear models by Shera and Zweig (1989) 

and Peake et al. (1991). The main differences between those models and the present one lies in 

the formulation for the cavities, the physiological mechanisms attributed to some of the elements, 

and more importantly the estimated parameters. We now discuss the physiological mechanism for 

each of the “boxes” in Fig. 4.2 .

We assume that the component of the eardrum impedance that is coupled to the ossicles is 

Zdc(u) and the component of the eardrum impedance that is coupled to the tympanic cavity, but is 

uncoupled from the ossicles, is Z ju(u:). A review of the anatomical and mechanical properties of 

the eardrum can be found in (Robert et al., 1982). The impedances of the malleus and incus arc 

Zm and Z{. The interconnection between these two bones is referred to as the incudo-mallcolar 

joint. The impedance of this joint is referred to as Zj,m. Similarly, the shunt impedance due to 

slippage between the incus and stapes, known as the incudo-stapedial joint, is Zju{u).  These 

joints are believed to be species dependent.

In most rodents such as guinea pig, chinchilla, etc. (Dallos, 1973, p. 5), man (Gyo et al.. 

1987), and other animals, it is believed that the malleus and incus bones are fused together. In 

animals such as the cat (Guinan and Peake, 1967), squirrel monkey (Rhode, 1971), and other*.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



83

there is experimental evidence of slippage between the two bones.

In man (Zwislocki, 1962) there is some evidence of slippage at the incudo-stapedial joint. To 

our knowledge there is no experimental evidence regarding slippage between incudo-stapedial 

joint for the cat. Z ju  is included in our model for the sake of generality.

The stapes impedance is Z a(u>) and the annular ligament impedance is Zai(w). The annular 

ligament is flexible and it keeps the stapes attached to the cochlea. The “load" to the middle ear 

is the cochlea. Input impedance of the cochlea is Zc(u>). The impedance of the round window is 

Zr u>(w).
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In the cat the volume of the middle ear is divided into two cavities by a partition called the 

bony septum. The cavity directly behind the eardrum cavity is the tympanic cavity; the pressure 

in this cavity will be reffered to as P(c(w). The other cavity is called the bulla cavity; the pressure 

in the this cavity is reffered to as Pf,c(w). Communication between the two cavities is possible 

by a small oval shaped hole in the bony septum. Since the round window is located in the bulla 

cavity the pressure seen by the round window is Ptc- In humans the total middle ear volume is also 

divided into two chambers, but it is believed that there is no partition between the two volumes. 

As a result, differences in the pressures of the two cavities are expected to be much smaller than 

those in the cat.

The chain-matrix model for a cavity with a variable cross-sectional area is to be used to 

represent the middle ear cavities and the ear canal. Viscous and thermal losses are explicitly 

included in the chain-matrix model. Further discussion of the chain-matrix model of a cavity and 

experimental measurements on some sample cavities is deferred until Chapter 5. In the present 

Chapter we assume that the chain-matrix model in valid without further proof.

The auditory meatus has been resectioned and thus the space between the tympanic ring and 

the measurement location is approximated as a cylindrical tube with length lec and diameter dec.
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The middle ear cavity impedance is modeled as three cylindrical tubes with a radiation impedance. 

The first tube represents the tympanic cavity with diameter dtc and length ltc. The second tube 

is not really a tube but a narrow passage called the foramen; this passage can be approximated 

as a tube with a short length /j  and diameter dj. The third tube represents the bulla cavity with 

length lbc and diameter dbc. The radiation load seen by the tympanic cavity Z Ti depends on the 

condition of the experiment. When the bulla cavity is intact an open circuit condition exists and 

thus Zri -*■ oo. When the cavities are surgically removed then there is a finite radiation load seen 

by that cavity.

4.1.2 Specific representation

To mathematically describe the middle ear one can write the equations of motion for each 

anatomical entity of the middle ear. Alternatively, by using dynamical analogies the mechanical 

system can be represented by an analog electrical network (Beranek, 1954; Olson, 1958; 

Pierce, 1989). Since electrical network representations are readily interpretable, we shall use them 

to describe the impedances of the eardrum and the ossicles. Such a network corresponding to the 

phenomenological model of the middle ear model is shown in Fig. 4.3 . The specific middle ear 

model of Fig. 4.3 is similar to that of Lynch (1981) and Matthews (1983). A good review of 

the relationship between this model and previous middle ear models is found in Shera and Zweig 

(1991a).

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



R
eproduced 

with 
perm

ission 
of the 

copyright 
ow

ner. 
Further 

reproduction 
prohibited 

w
ithout 

perm
ission.

KalUec

Pec

Rdu Rjisjim

Zee Mdu
K jisjim

Kdu

K'rw

Mrl Rrl

Zm ec

Cochlea

Ear Canal 
Cavity

Middle Ear 
Cavities

Zdo c

Figure 4.3: Specific implementation fo r  the phenomenological representation o f the middle ear: The cochlear input impedance is obtained 
from the chain-matrix cochlear model of the previous Chapters. The eardrum and the ossicles are modeled by lumped-parameter elements.
The primes indicate that those impedances have been transformed to the eardrum side by the transformer ratio. In combining the impedance 
of the middle ear cavities with the impedance of the eardrum we have assumed that they can be connected in series; the validity of which is 
discussed in Sec. 4.8. The cavities are modeled as chain-matrices that include visco-thermal losses and effects resulting from non-planer wave 
propagation due to a constriction such as the foramen. When the bulla cavity is resectioned, ZTi is approximated by the parallel combination oo
nl and Hrt For the closed bulla case Z Ti — 00.
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In Fig. 4.3 the combined impedances of the eardrum, ossicles, and cochlea are shown to be 

connected in series with the impedance of the middle ear cavities. The validity of the series model 

has been experimentally tested by making various surgical modifications to the cat middle ear 

anatomy (Lynch, 1981). Such a network representation requires the assumption that the pressure 

on the middle ear cavity side of the round window is the pressure in the tympanic cavity (P(c). 

Anatomically the round window is located in the bulla cavity and thus the actual pressure seen by 

the round window is that of the bulla cavity (Pbe)- From the eardrum impedance point of view, 

the nature of the errors made in making the assumption that the round window is located in the 

tympanic cavity is limited to a small frequency region. This point is further discussed in Sec. 4.8.

The impedance due to the middle ear cavities will be reffered to as Zmec(u>). For the cochlear 

input impedance Z'c(u) we use the frequency,dependent results of the previous Chapters. The 

prime indicates that the impedance has been transformed to the eardrum side of the transformer 

ratio. The rest of the boxes shown in Fig. 4.2 are each represented in Fig. 4.3 by an R, M , K  series 

network, where R  represents the damping (due to internal losses), M  represents the inertance (due 

to mass), and K  is the stiffness of the particular middle ear structure. All elements referred to will 

be in cgs units.
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4.1 J  Network synthesis

The problem of network synthesis from a given driving-point impedance is a classical one in 

analog circuit theory. Some of the most important concepts are presently reviewed.

There are several general procedures in network synthesis: the Brune procedure, the Darlington 

procedure, the Bott-Duffin procedure, and the Cauer method. All of these describe a method for 

synthesizing a network from a positive real (p.r.) driving-point impedance. By p.r. we mean that 

the real part of the driving-point impedance is non-negative for all frequencies. With the exception 

of measurement noise, the driving-point impedance measured in the earcanal indicates that it is p.r. 

for all frequencies. The Brune procedure and the Darlington procedure require the use of mutual 

inductances (ideal transformers) as part of the network. Bott and Duffin were the first to prove 

that it is possible to realize p.r. functions without the use of transformers. In Cauer’s method 

the driving-point impedance and transfer function are important. In this method a ladder network 

is synthesized by removal of poles and/or zeros. A more complete analysis of these network 

synthesis procedures can be found in (Weinberg, 1962, Chap. 10), (VanValkenbuig, 1964), and 

others.

The procedures briefly mentioned above generally assume no knowledge of the mechanisms of 

the system under consideration. As a result, application of different procedures results in different 

forms for the network. In this sense the synthesized network is not unique. For the problem at hand 

the particular network is necessitated by physical principals and hence the physical network of 

Fig. 4.3 . The difficulty lies in estimating the parameters and verifying the accuracy of the chosen 

topology. An informal procedure for estimating the parameters will be described in Sec. 4.3.4.
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4.2 The cat eardrum impedance data

The eardrum impedance data that we shall use to estimate the middle ear parameters is shown in 

Fig. 4.4 (Allen, 1986). The bulla cavity was opened as wide as possible and the bony septum 

that separates the bulla cavity and the tympanic cavity was removed. Subsequently, a calibrated 

pressure transducer and probe-tube microphone assembly were placed close to the tympanic ring 

(typically less than 4-5 m m  from the eardrum).

The impedance measurement technique will be described in Chapter 5. In summary, 

a calibration technique allows estimation of the Thevenin equivalent source parameters for 

the pressure transducer. With these parameters the impedance is calculated from pressure 

measurements of the unknown cavity by a simple pressure divider rule. The resulting impedance is 

the impedance of the unknown load normalized by the characteristic impedance of the transducer 

Zot. The normalized earcanal impedance will be reffered to as Zec(u>).

The measurements shown in Fig. 4.4 are to 33 kHz. It is noted that such high frequency 

measurements were not previously available. One of the factors that determines the high frequency 

limit for these measurements is the frequency at which the pressure transducer starts to roll-off. 

In this particular case the pressure transducer started to roll-off at approximately 20 kHz (Allen, 

1986).

Recall that the system is calibrated with cylindrical tubes having hard walls. The ear canal 

geometry is more complicated than that of cylindrical tubes. In addition, the complicated motions 

of the eardrum may, in theory, excite higher-order modes (Rabbitt, 1990). Under these conditions 

it is possible for higher order modes to propagate short distances and possibly have an effect on the 

impedance measurements. Based on some simple calculations Lynch (1981, p. 147) has shown 

that these higher-order modes are evanescent near the location of the transducer assembly.
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Figure 4.4: The “surgically modified" earcanal impedance measurements (Allen, 1986): All 
measurements were made with the bulla cavity wide open and the bony septum removed. (1) 
“Intact” -  ossicles and cochlea in noimal state (Z'ec), (2) “Drained cochlea” -  scala vestibule 
and scala tympani perilymph removed (Z^) ,  (3) “Interrupted incus” -  Cut incus away from 
stapes (Z ‘‘c). The magnitude of the impedance normalized to the characteristic impedance of the 
transducer assembly is shown in the upper panel. The lower left panel shows the real part of the 
normalized impedance. The scale in the real part was adjusted so as to display the full range of 
the curves. The right panel shows the phase angle in multiples of it units. The frequency range is 
from 100 Hz to 33 kHz. All subsequent figures showing impedances will follow this format.
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There are three measurement conditions shown in Fig. 4.4 . These measurements were made, 

with the tympanic cavity and bulla cavity wide open, in the following order:

•  Cochlea and middle ear ossicles “Intact” Z'cc(u)).

•  Perilymph removed -  “drained cochlea” Z^(ui).

•  Cut incus from stapes -  “Interrupted Incus” Z"c(w).

Note that when the incus is cut, the impedance of the annular ligament Zai, stapes Z„  and the 

cochlea Zc may no longer be observed at the eardrum. Thus the complexity of eardrum impedance 

is reduced to that of the eardrum, malleus and incus. In the drained cochlea case the complexity 

increases from the previous case by the addition of Zai and Z„. And finally in the intact case the 

complexity is further increased by the load Zc placed on the stapes. Consequently, we will begin 

our modeling efforts with the least complicated data -  that is in reverse order of the measurements.

4.2.1 Reflectance domain

Up to now we have presented the data in the impedance domain. Very often transforming the 

impedance to the reflectance domain offers an understanding of the data that is not possible in the 

impedance domain. The normalized impedance Zec(u>) and reflectance R ec{v) are related by the 

bilinear transformation:

RM =  Z e e [ w j + j -  < 4 1 )

The magnitude of the reflectance is sensitive to S?e[Zec] (Smith, 1944). For example if is 

lossless then \Rec\ is one for all frequencies. We will use the notation 9te[Zec] and 3 m [ /„  j to 

indicate the real and imaginary parts of Zec.

One interpretation of reflectance is that it is the complex ratio of the reflected wave to the
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incident wave. Thus it is possible to obtain information regarding the amount of delay in the 

reflected wave from the phase of the reflectance.

Khanna and Tonndorf (1969), Rosowski et al. (1986), and others have shown that calculations 

of power are somewhat correlated with threshold of hearing. Thus there is some evidence that 

the cochlea is a detector of power. It can be shown that the relationship between reflectance as 

calculated by Eq. (4.1) and the average normalized real power WtIW 0 absorbed at the eardrum is 

simply (Carlin and Giordano, 1964, Sec. 4.3)

^  = 1 -  IJW O I2. (4.2)

where W t is the power transmitted to the ossicular chain, cochlea, and middle ear cavities, 

and W 0 is the power generated by the pressure transducer. Because measures of reflectance 

are meaningful in their own right and because power calculations can be easily made from the 

reflectance calculations we will only make calculations of reflectance in this study.

The impedance Z'e'c when transformed to reflectance will be reffered to as R"c\ similarly for 

and R'ec. These reflectance domain calculations will be shown as we model each case.

4.3 Interrupted incus

The effect of cutting the incus is that there are no impediments to the motion of the tip of the incus; 

as a result there is no force developed at its free end. This effectively corresponds to an acoustic 

short circuit to ground (zero pressure). In the literature this is referred to as the “interrupted incus" 

case. The anatomical representation corresponding to this case is shown in Fig. 4.S . The circuit 

diagram corresponding to the “interrupted incus” case is shown in Fig. 4.6 . Since bulla and 

tympanic cavities are exposed to the atmosphere, the MEC impedance is approximated as a short

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



94
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Figure 4.5: Anatomical representation for the “interrupted incus" case: In this case the end of the 
incus is free to move without an impedance at its tip; this is equivalent to an acoustic shon circuit. 
Zdoc(w) is the impedance of the eardrum with open cavities. Z le'c is the impedance measured in 
the earcanal for this case.

circuit. In the section that follows we estimate the unknown parameters for the circuit of Fig. 4.6.

4.3.1 Estimating the parameters

To a first order approximation, the phase of the impedance data and the slopes of the magnitude 

of the impedance Z'e'c in Fig. 4.4 indicate that the impedance consists of stiffness dominated 

regions and mass dominated regions. The impedance data can be approximated with straight line 

approximations having - 6  db/oct slopes for the compliance dominated regions and +6 db/oct 

slopes for the mass dominated regions.

Recall that the impedance shown in Fig. 4.4 has been normalized by the characteristic
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Uec R d o  Mdc Mm Mi
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R j im

Kj im

Figure 4.6: Circuit diagram for the “interrupted incus" case: Each element here corresponds to 
a particular anatomical entity in Fig. 4.5 . There are eleven parameters that need to be evaluated. 
Mass of the malleus M m and the coupled eardrum mass M jc are considered as a single parameter. 
The tympanic cavity is exposed to the atmosphere and thus Zmcc is approximated as a short circuit.

impedance of the measurement transducer Zot = paca/A t. Where paca = 40.87 at 27 ±  10 °C  

and A t the area of the transducer is 0.1018 cm; this results in Zot«  401 dyne -  sec/cm 5.

The impedance Zec of a compliance dominated region is K / ju .  Unnormalizing the impedance 

by Zot results in \Zec\ =  Zot K/u>. Thus the stiffness components are estimated according to

Using the above equations Kdc, Kdu, Mdc, Mdu were estimated. The value for Rdc was chosen to
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match 9te[Z"c ] for frequencies below approximately 1 kHz, i.e.

R dc = Zot*e[Z"]. (4.5)

Rdu was initially chosen arbitrarily. These parameters were subsequently adjusted to obtain a 

good fit to the impedance data. The optimized parameters are listed in the first part of Table 4.1. 

The measured impedance and corresponding model result is shown in Fig. 4.7 . Discussion of 

how the other parameters are evaluated is found in section 4.3.3.

4.3.2 Frequency region below 5 kHz

For frequencies below approximately 5 kHz, Z"c is dominated by Zdc- In the frequency region 

between 100 Hz and 1 kHz the impedance is dominated by the stiffness K dc. Between 1 kHz and 

5 kHz it is dominated by the mass Mdc. \Z“ \ reaches a minimum when the reactive components 

of Zdc cancels. The frequency where this occurs is

At frequency f dc the impedance is due mostly to Rdc-

In its normal state, the eardrum is a cone shaped structure. However, when the malleus is cut 

the eardrum starts to lose its conic shape and tends to “crinkle” (Allen, 1990). Thus the stiffness in 

the coupled portion of the eardrum K dc is mostly due to the stiffness of the the superior ligaments 

and some component of it is due to the eardrum itself. Since the two mass components Mdc and 

Mm appear in series, we have combined them into a single mass Mdc-

(4.6)
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4.3.3 Frequency region above 5 kHz

For frequencies above approximately 5 kHz the behavior of the measured earcanal impedance 

is quite complicated. It is dictated by Z ju, Zjim, and Zm. For stimulus frequencies between 

approximately 5 kHz and 8 kHz the impedance is dominated by Iidu- For frequencies above 

approximately 12 kHz it is dominated by Mdu.

In the 8-12 kHz frequency region the magnitude, real part, and the phase of Z"c are non­

monotonic. In Fig. 4.7 this non-monotonicity appears as a “bump” and for brevity we shall 

refer to it as such. Initially this bump was thought to be artifactual. However, such impedance 

measurements on other cats (unpublished data) also show a similar bump in the 10 kHz vicinity. 

This has lead us to believe that this bump is not an artifact but is due to some physical mechanism. 

We shall refer to this bump as Zf, in the impedance domain. We will aigue that the physical 

mechanism for this impedance is slippage between the incudo-malleolar joint.

Initially it was thought that Zj was due to the impedance of the open cavities behind the 

eardrum. In fact by assuming Af, to be much smaller than Mm (i-e. short circuiting Zj,m) we 

were able to somewhat replicate the bump by choosing appropriate dimensions and radiation load 

for the tympanic cavity. However, based on Guinan and Peake’s (1967) experimental observation 

that there is slippage between the cat incudo-malleolar joint for frequencies above approximately 

8 kHz, it would appear that Zj{m may play an important role in Zec. Subsequent to this realization 

we were able to obtain parameters for 2j,-m and M, that resulted in a good fit to the measured Z “ .

Thus far two different hypothesis have been put forth to characterize Z"c in the 8-12 kHz 

frequency region. The model with incudo-malleolar slippage resulted in a better fit to the measured 

data. Based on this and attempts to model other data, such as Z ^  and Z*c, the evidence that Zh is 

due to slippage of the incudo-malleolar joint appears stronger.
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100.0
Model, lac-0.3 cm 
Interrupted lncua 
Model, lec-0.0 cm

0 . 0 1 1-----
1 0 0 . 0

freq
47.953 0.75

O . O l l -----
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Figure 4.7: Comparison o f model impedance and measured impedance fo r  the “interrupted incus" 
case (Z"c): The frequency range is from 100 Hz to 15 kHz. The data is labeled “interrupted incus”. 
For frequencies below 5 kHz the impedance is dominated by the coupled portion of the eardrum 
impedance Z jc- Above 5 kHz the eardrum impedance depends on other factors. In both magnitude 
and real part of the data there is a nonmonotonic transition in the frequency region between 8 kHz 
and 12 kHz. This behavior in the impedance is due to slippage between the malleus-incus joint 
Zjim. The two model calculations are for a ear canal length lec of 0.3 cm  and 0.0 cm.
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Impedance of Fig. 4.7 after transforming to the reflectance domain is shown in Fig. 4.8. Since 

the impedance is p.r. the magnitude of the reflectance jRec(w) must be less than one. Below 300 

Hz Re[Z"c ] is less one due to low-frequency measurement noise, thus |i?“c| is greater than one 

for those frequencies.

The magnitude of the reflectance |fl"c| is between 0.9-0.95 in the 300 Hz to 7 kHz frequency 

region. Starting at 7 kHz |i?e’c| starts to decrease, reaching a minimum of about 0.25 near 10 kHz. 

Above 10 kHz |7?"c| starts to increase. At the frequency where \R"C\ is a minimum the phase of 

R'e'c goes through a nonmonotonic transition.

Stiffness K jim and mass Af, form a resonant circuit with resonance frequency at }b- This 

resonance is what causes the minimum in |iZ"c| and the “bump” in phase of R"c. Thus the 

minimum in reflectance is due to slippage between the incudo-malleolar joint. The parameters for 

Zj{m and Mi were adjusted until model results and data were in good agreement in the reflectance 

domain. These parameters are found in the first part of Table 4.1. For the parameters chosen, /<, is 

approximately 8.4 kHz. In the model is approximately 10 kHz. Because stiffness and mass of 

Zdc contribute to the effective values for K jim and Mi, fb is higher than predicted. The minimum 

value of |/2"c|, at /(,, is a function of Rjim. Thus it appears that it is possible to measure the effect 

of the incudo-malleolar joint, for the interrupted incus case, from impedance measurements at the 

eardrum.

For frequencies above about 10 kHz, the magnitude of the reflectance R'e'c for the model and 

data are in good agreement, while the phase of the model reflectance is higher than of the data by 

as much as |x .  The real part of earcanal impedance Re[Z"c ] for the model and data are in good 

agreement for all frequencies shown. However the phase and the magnitude of Z'e'c are not in gixxl 

agreement for frequencies above about 12 kHz. This points out the inadequacies of the model
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Figure 4.8: Reflectance (R"c) corresponding to the "interrupted incus" impedance: The non­
monotonic behavior in the 8-12 kHz frequency region of the impedance domain is shown here to 
have a pronounced effect on the magnitude of the reflectance. The phase clearly indicates that the 
primary effect of ear canal length is to add delay.
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in being able to characterize the imaginary part of the “interrupted incus” earcanal impedance 

Z 'l  for frequencies above 10 kHz. It for this reason that we have limited our model results to 

frequencies below 15 kHz. The behavior of the earcanal impedance and reflectance is dominated 

by the uncoupled portion of the eardrum impedance Z ju for frequencies above approximately 5 

kHz. Thus a change in the transformer ratio in a frequency dependent manner is not likely to fix 

the problem.

One possibility for the error in 3m[Z"c ] is that the parameters need to be further modified. A 

more likely alternative is that the Z^u = Rdu + ju>Mdu + R'du/ju is an inadequate model for the 

uncoupled portion of the eardrum impedance. Experimental evidence, for stimulus frequencies 

above 3-4 kHz and SPL’s above 90 dB (Khanna and Tonndorf, 1972), suggest that the eardrum 

vibrations are complicated. In order to characterize the complicated motions of the eardrum a more 

complete characterization for Z ju is needed. It is possible, and even likely, that for frequencies 

above 10 kHz, Z^u cannot be modeled by a lumped parameter description (Rabbitt and Holmes. 

1988; Rabbitt, 1990).

One way to isolated the uncoupled eardrum impedance is to make eardrum impedance 

measurements, for frequencies as high as 20-30 kHz, with zero velocity through the coupled 

portion of the eardrum (see Fig. 4.6). This is referred to as the “blocked malleus” condition. The 

malleus can be blocked by “gluing” it to the walls of the middle ear cavity. To our knowledge 

measurements as such are not available in the literature. Thus it is not possible to model the 

eardrum impedance at the highest frequencies without further measurements.

4.3.4 Effect of the space between transducer and eardrum

Two different model calculations for Z“ are shown in Fig. 4.7 . The curve with /ec = 0 rm 

corresponds to the impedance of the eardrum without any influence due to cavities (open circuited)
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Table 4.1: Estimated parametersfor Zdoc: In each case the impedance is the sum of the impedance 
due to each element, i.e.: Z  =  R  + K /jui +  juiM. The effective transformer ratio Tr is needed to 
transform Zai, Z3, and Zrw to the eardrum side.

Description Function R (dyn -  sec/cm?) K (.dyn/cm i>) M (g/cm 4)
Uncoupled TM Zdu 45 8  X 10' 0.0085
Coupled TM Zdc 20 9 x  10s 0.013
Incus Zi 0 0 0.0054
Incudo-malleolar Zjim 60 1.5 x 107 0
joint

Annular Ligament Z„l 1.1 x 103 5.5 X 109 0
Stapes Za 0 0 3.3
Round window ZTw 0 1.2 x 108 0
Incudo-stapedial Zjis 00 00 00
joint

Transformer ratio Tr = 76 (dimensionless)

Zdoc• The curve with lec =  0.3 cm corresponds to our model estimate of Z'e'c (Zdoc with the 

earcanal cavity). The effect of the earcanal tube is a translation in impedance to lower frequencies. 

The group delay is

(4.7,

where 4>(uj) is the phase of the reflectance. Figure 4.8 shows that the effect of the space between 

the transducer and the eardrum is to increase the slope of the phase of R'e'c. In the above equation, 

an increase in the slope of the phase corresponds to an increase in the group delay. Although not 

shown here, the group delay for R “c was computed for the cases lec =  0 cm and lec =  0.3 cm. 

As expected, the case with lec = 0.3 cm was found to have a larger group delay than the case 

with lec =  0 cm. The magnitude of the reflectance for the two cases is virtually indistinguishable. 

Thus when viewed in the reflectance domain, it is clear that the effect of the space between the
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transducer assembly and the tympanic membrane is to add delay to the reflected wave.

4.4 Drained cochlea

In the “drained cochlea” case the cochlea is attached to the stapes, as in the normal case, but with 

perilymph removed from the scala vestibule and scala tympani. Thus, the difference between the 

“interrupted incus" measurement condition and that of the “drained cochlea” is that in the later the 

incus is no longer acoustically short circuited to ground. In the drained cochlea case the load to the 

incus is the input impedance of the drained cochlea Z /c, the impedance of the annular ligament 

Zai =  Rai + K ai/]u>, and the impedance of the stapes Z, =  ju M ,.

With the perilymph drained, the characteristic impedance [see Eq. (2.6a)] of the cochlea at the 

stapes is

z£ - \ J W -  ,48’
That viscous and thermal effects are insignificant when the cochlea is air-filled has been assumed 

inEq. (4.8). Using pa =  1.18 x 10-3 g /cm 3 for the density of air, K'0 =  1.7 x 109 dyn /cm 4 for 

the BM stiffness at the base, and So = 0.02 cm2 for the area at the base of the cochlea we obtain 

Z * l w 2 x 104 dyn -  sec/cm 5. For comparison, the cochlear input impedance Z / c was computed 

for the drained cochlea case using thermodynamic constants of air for the chain-matrix method 

developed in Chapter 2. Magnitude and phase of Z / c were found to be frequency dependent. The 

drained cochlea input impedance Z *c is mass dominated for frequencies below approximately 1 

kHz at which point it reaches a maximum magnitude of approximately 1.8 x 104. Above 1 kHz 

Z /c oscillates and goes in and out of the mass and stiffness dominated regions.

Lynch et al.’s (1982) experimental averaged value for R ai is 2 x 10s; an order of magnitude 

greater than Z*£. Thus the impedance of the air filled cochlea does not represent much of a load
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to the stapes in the drained cochlea case. We shall use 2.7 x 109 and 3.3 for K ai and M , (Lynch 

et al., 1982) as initial values.

4.4.1 The transformer ratio

Measurements made by Lynch et al. were made on the stapes side. In order to see the effect of 

Zc, Z3, and Zai on the eardrum side, the transformer ratio Tr must be evaluated. Impedances are 

transformed to the eardrum side by dividing by Tr2; for example Z'c = Z d T } .

There are several factors that contribute to the transformer ratio. These include the ratio of the 

areas of the tympanic membrane to the oval window, the lever ratio due to the malleus and incus, 

and buckling due to the conical shape of the tympanic membrane. All of these factors depend on 

the particular anatomy. Thus it is species dependent, animal dependent, and it may also depend on 

the physiological state of the animal. It is perhaps for these reasons there is not general agreement 

on what the transformer ratio should be (Pickles, 1988, pp 15-23).

Using holographic techniques Khanna and Tonndorf (1972) have reported displacement 

patterns of the eardrum surface. All their measurements were for levels above 90 dB SPL. For 

a stimulus frequency of 600 Hz, and levels as high as 115 dB SPL, the eardrum seems to move 

without multimoding. But for frequencies above 3-4 kHz their measurements show that the 

eardrum motion “breaks up”, suggesting that the eardrum multimodes. Khanna and Tonndorf. 

however, did not report the SPL used corresponding to each stimulus frequency. If at the higher 

frequencies the multimoding of the TM were due to level dependent effects, then the observatioas 

would seem to indicate non-linear phenomena. The effect of multimoding, whatever its cause, on 

the transformer ratio is unclear. Presently we assume that the transformer ratio Tr as it pertaias to 

impedances of the cochlea, stapes, and annular ligament is independent of frequency.
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4.4.2 Comparison with data

Allen’s impedance measurements were made on the eaidnim side and consequently it is only 

possible to estimate parameters for Z , = M , and Za( =  R al +  A '0 i / jc j  when they have been 

converted to the eardrum side by the transformer ratio Tr. Since none of the four parameters are 

known for this particular cat, they were adjusted simultaneously to obtain a fit to the data. It is 

important to explicitly evaluate Tt in order to calculate Z'c from Zc for the “intact” cochlea case 

of section 4.5.3. Final parameter values used to compute the model are listed in Table 4.1. Model 

results and measured data for Z^f are shown in Fig. 4.9.

For frequencies below approximately 2 kHz Z £  is dominated by the stiffness of the A'0/. 

The annular ligament resistance Rai was chosen to match 3fe[Z* ] for frequencies below 2 kHz. 

Above about 4-5 kHz Z *  and Z"c are approximately the same.

The impedance Z tran sfo rm ed  to the reflectance domain is shown in Fig. 4.10 . In the 

frequency region between 300 Hz and 7 kHz, magnitude of R decc has gone from a minimum of 

approximately 0.9 in the interrupted incus case to a minimum of approximately 0.8 for this case. 

This decrease in reflectance is due to an increase in 3fe[Zec], A large portion of this in the model 

is due to R ai. Thus there is a decrease in reflectance is due to dissipation o f energy in the annular 

ligament.

Near 10 kHz, model JJefZ^f ] is higher than the data by approximately a factor of two; other 

than this, agreement between model and data 3?e[Z* ] is fairly good. For frequencies above 

approximately 10 kHz, agreement between model and data phase for Z dl  is poor. This manifests 

itself as an error in the phase of R dcc by as much as |t t  and a slight error (less than 3 dB) in the 

magnitude of R dl  for frequencies above 10 kHz. As pointed out in the previous section, these 

model errors are due to inadequacies of the uncoupled portion of the eardrum Z ju.
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Figure 4.9: Earcanal impedance for the "drained cochlea" case: For frequencies below 
approximately 2 kHz Z£  is dominated by the impedances of the annular ligament and the stapes. 
Above 4-5 kHz the measured impedance is approximately the same as Z"c.
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Figure 4.10: Reflectance for the "drained cochlea" case: In comparison to the “interrupted incus” 
case, the addition of the annular ligament resulted in a decrease in reflectance magnitude to a 
minimum of approximately 0.8 for frequencies between 300 Hz and 7 kHz and an increase in 
phase for frequencies between 300 Hz and 4 kHz.
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4.5 Intact ossicles and cochlea

In the “intact” case, the ossicles and the cochlea are unaltered from their normal operation. In this 

case, the load to the stapes is the impedance of the fluid filled cochlea Zc(u). Properties of Zc 

were extensively studied in Chapters 2 and 3. We have used the result of cat Z c from Fig. 3.16 

having a realistic scala area Sm(x) and including viscous perilymph. It was transformed to the 

eardrum side by Z'c = Zc/T }. All other parameters were from the drained cochlea case.

4.5.1 Mass of the vestibule

Note that in our middle ear model the mass of the vestibule M v is not present. Lynch et al. ’s (1982, 

p 126) model included M v. They attributed M v to nonuniform velocity distribution of the fluid 

near the entrance of the cochlea. Their estimate of M v is more than an order of magnitude greater 

than Ma. Zwislocki’s (1962, p 1520) Mv is attributed to the mass of perilymph between the oval 

window and the point at which the basilar membrane begins. Our own model computations of 

the cochlear input impedance in section 3.9 for frequencies up to 70 kHz resulted in a mass like 

behavior for frequencies above f max of the cochlear map (57 kHz for the cat). But below f maz no 

mass like behavior was observed. Consequently we have not included M v in our model and do 

not feel that this mass is experimentally justified.

4.5.2 Comparison with data

The model and measured eardrum impedance for the “intact” case Z'ec are compared in Fig. 4.11 

. In comparison with Fig. 4.9 it is clear that the effect o f the cochlear input impedance on 

impedance measured at the eardrum is quite significant.

The transformation from impedance of Fig. 4.11 to reflectance is shown in Fig. 4.12 . When 

this figure is compared with Fig. 4.10 it is evident that without the fluid filled cochlea, most of the

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



109

100.0

—  Model
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Figure 4.11: Earcanal impedance with “intact" ossicles and cochlea: In the intact case the 
impedance of the cochlea is added to that of the drained cochlea case. Cochlear input impedance 
for the cat was calculated with a realistic scalae cross-sectional area and viscous perilymph (see 
text). For frequencies between 400 Hz and 10 kHz, the normalized impedance magnitude is seen 
to fluctuate around the characteristic impedance of the transducer tube in both the model and data. 
For frequencies between 100 Hz and 10 kHz, the real part of the eardrum impedance changes by 
about a factor of 5 (14 dB).
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Figure 4.12: Earcanal reflectance with “intact" ossicles and cochlea: With the an intact cochlea 
the reflectance magnitude decreases by almost 30 dB in the 1.6 kHz frequency region. This 
decrease in reflectance magnitude is due to the impedance of the cochlea. The data and model 
deviate for frequencies above approximately 10 kHz. (Note the change in magnitude scale from 
previous figures).
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eneigy in the earcanal is reflected at the eardnun. When the load to the stapes is a normal cochlea, 

a much larger portion o f the incident sound (20% vs. 97% at 1.6 kHz) is transmitted through the 

middle ear and into the cochlea. A more extensive discussion of the effect of the cochlear input 

impedance is found in the next section.

All three ear canal impedance measurements indicate that for frequencies above 10 kHz our 

middle ear model no longer works. At this point it is not clear why this is so. Some possible 

explanations are: (1) An insufficient numberof degrees of freedom in model of Z ju, (2) Evanescent 

higher-order modes near the measurement plane, or (3) Measurement and/or calibration errors. 

We will restrict all subsequent calculations to frequencies below 10 kHz.

4.5.3 Effect of cochlear input impedance on earcanal measurements

In calculating the earcanal impedance (and reflectance) we used the cochlear input impedance as 

calculated by the chain-matrix method of Chapters 2 and 3. In this section the effect of different 

assumptions for the cochlear input impedance on model calculations of the earcanal impedance 

and reflectance is further analyzed. Three different models for Zc will be investigated: the 

chain-matrix calculations of Chapter 3, Lynch et al.'s (1982) experimentally based model, and 

Allen’s (1979) theoretical model for Zc. These three models decrease in level of complexity and 

assumptions.

The difference between Lynch et al.'s and Allen’s WKB model for Zc is that in the former 

there is a resistor Ro in series with the mass component Mo. This resistor has a significant effect 

on the magnitude of Zc for frequencies below 500 Hz, but affects the phase of Zc over a much 

wider range of frequencies (see Fig. 3.4 ). In Lynch et al.'s model, the real part of Z c starts to 

become dominant for frequencies above approximately 500 Hz, whereas in the WKB model, the 

real part of Zc starts to become dominant for frequencies above approximately 5 kHz. Allen's
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WKB model for Zc was formulated for a zero viscosity, constant scalae area cochlear model, and 

it is representative of Zc for most constant scalae area cochlear models.

Model calculations of Zc for the tapered case are somewhat more complicated (see Fig. 3.16 

). In this Chapter when we refer to the tapered case we mean that the cross sectional area, used 

to calculate Zc, is one that corresponds most closely to the cat anatomy (see Sm of Fig. 3.10 ). 

Magnitude of Zc for the tapered case increases from a value of approximately 0.5 MCI at 10 Hz to 

a value of approximately 3 MCI at 500 Hz. Above 500 Hz the magnitude at first decreases and then 

it increases. The corresponding phase increases from approximately 0° at 10 Hz to approximately 

7t/4 near 300 Hz. Above 300 Hz, the phase at first decreases and then it is nonmonotonic. The 

phase of Zc above 1 kHz fluctuates and on the average it is approximately tt/S.

Three model calculations for the earcanal impedance for the “intact” case (Z'ec) are shown in 

Fig. 4.13 . The curve corresponding to the tapered area calculations for Zc is our best model fit 

to the “intact” case from Fig. 4.11 . From Fig. 4.13 it is clear that with the WKB model for the 

cochlear input impedance the real part of Z'ec is in error from the measured data by as much as 

13-14 dB for frequencies below 1 kHz. This is consistent with the fact that the WKB model for 

Z c and measured Zc are in error by approximately the same amount. With a WKB model for Zc, 

errors as big as approximately 15 dB exist in measured magnitude and model magnitude of Z\c 

for frequencies above 1 kHz. The corresponding phase is in error by as much as | r r .  These errors 

in impedance translate to much larger errors in the reflectance domain.

The reflectance domain calculations for the “intact” case R'ec are shown are shown in Fig. 4.14 

. With the WKB model for Zc the maximum error in magnitude of R'ec is approximately 24 dB 

near 1.5 kHz. There is also a zero in R'ec with the WKB Zc between 6-7 kHz. This zero due to 

cancellation of imaginary components in Zc and the middle ear impedance.
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Figure 4.13: Effect o f the cochlear load Zc on earcanal impedance: The eaidrum impedance 
is computed using three different models for the cochlear input impedance Zc(u>). The tapered 
area calculations were made with the chain-matrix cochlear model that takes into account the 
scalae cross-sectional area variations and visco-thermal losses. In contrast to the chain-matrix 
model, the WKB model for Zc (Allen, 1979) was based on the assumptions of no viscosity and 
constant cross-sectional area. The WKB model is representative of Z c for cochlear models with 
constant cross-sectional area. This figure shows that tapering and viscosity o f the cochlea have an 
important effect on the impedance measured at the eardrum. Lynch’s (1982) model for Zc, based 
on averaged measurements, is in closer agreement with our model calculations than the WKB 
solution. Some differences exist due to averaging of data. These differences are seen to be more 
pronounced in the reflectance domain.
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Figure 4.14: Effect o f the cochlear load Zc on earcanal reflectance: When a tapered cochlear 
model is used then the calculated reflectance magnitude is seen to be significantly less than when 
a constant cross sectional area cochlear model (WKB Zc) is used. The calculated reflectance 
with Lynch’s model for Zc lies between the other model results shown. The fine structure in the 
reflectance magnitude is due, in part, to the fine structure of the cochlear input impedance.
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When Lynch et al.'s model for Zc is used, deviations in impedance and reflectance are 

somewhat reduced, but still quite large. The error in impedance magnitude and real part of the 

impedance is less than 6 dB. The error in phase is less than j7r. The corresponding maximum 

error in magnitude of R \c is approximately 15 dB near 1.5 kHz.

The calculation with tapered Zc is able to model the fluctuations present in the measured 

impedance and reflectance. For example, near 1.5 kHz the slope of the phase of the “intact” 

reflectance R'ec increases in both the model and the data. Above 6 kHz the slope of the phase 

of R'ec goes from being negative at first to positive and then negative again. Neither the WKB 

model nor Lynch et al.'s model for Z c is able to replicate the fine structure of the reflectance 

magnitude and phase. Recall that the middle ear model for the three cases is exactly the same. 

Thus, we conclude that the fine structure observed in earcanal reflectance, with the intact cochlea 

and middle ear, is due, in part, to the fine structure o f the cochlear input impedance.

4.6 The effect of the cochlea on the motion of the stapes

Parameters for the ossicular path of the middle ear were based on “surgically modified” as well as 

“intact” eardrum impedance measurements. In order to verify that this method of estimating the 

parameters leads to reasonable middle ear parameters, calculations of measurable quantities, other 

than eardrum impedances, should agree with those measurements without any modifications to the 

estimated parameters.

An important measurement is the stapes displacement for a given earcanal sound pressure. 

This measurement is not available for the specific cat studied thus far. However, the earcanal 

pressure to stapes displacement transfer function has been measured for frequencies up to 10 kHz 

in other laboratories (Guinan and Peake, 1967; Tonndorf and Khanna, 1967). We shall use the
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data of Guinan and Peake (1967) to compare our calculated results.

Figure 4.15 shows the stapes displacement per unit earcanal pressure as measured by Guinan 

and Peake (1967) on four cats. Also shown is the stapes transfer function calculated from the 

middle ear model. To analyze the effect of the cochlear input impedance, the stapes transfer 

function is calculated using three different cochlear models: (1) model for Zc of chapter 3 that 

explicitly takes into account scalae area variations and perilymph viscosity, (2) Lynch et al.'s 

model for Zc based on measured data, and (3) Allen’s (1979) theoretical model for Zc based on 

the WKB approximation of a constant scalae cross sectional area cochlear model with inviscid 

perilymph. Note that as in Fig. 4.13 the middle ear model did not change, only the model used to 

represent Z c has changed.

All three model results are approximately the same for frequencies below about 300 Hz. Near 

1 kHz there is a resonance in the stapes displacement for the model computation with the WKB 

Zc(ui). When the chain-matrix model or the Lynch et al. model for Z c(u>) is used, the resonance 

is no longer observed. The phase of the stapes motion, corresponding to the WKB model for Zc, 

changes rapidly whereas for the other Zc models and in the measured data the decrease in phase is 

gradual. The tapered cochlea model presents a much higher resistive load to the middle ear than 

the WKB model does; as the result the resonance with the tapered cochlea model is damped out to 

a much greater degree than the WKB cochlear load.

In comparison to the data all three model computations show a larger stapes displacement by 

a factor of about 1.6 (4.1 dB). Since the error is for frequencies below 800 Hz, one can expect that 

the parameters of the elements that dominate in this frequency region need to be modified. The 

elements that dominate in this frequency region are Kdc and K a/. Adjustment of these parameters 

could result in a better agreement with the measured ear canal to stapes transfer function. But if
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Figure 4.15: 77ie stapes displacement for different Zc model assumptions: The top figure shows 
the stapes displacement per unit of SPL at the eardrum. The bottom figure shows the phase of the 
stapes displacement relative to the pressure at the eardrum. The three different models for Zc used 
to compute the eardrum impedance for Fig. 4.13 were also used to compute the stapes transfer 
function. The measured data are from Guinan and Peake (1967).
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adjustments were to be made to Kdc or K ai then the match to the eardrum impedance would not 

be as good. Recall that the model parameters were not explicitly adjusted to fit this data. Since an 

estimate of the measurement error was not reported by Guinan and Peake we do not know at this 

point know which is in error.

4.7 The middle ear cavities

The assumption up to now has been that the space in the back of the eardrum is fully vented to 

the atmosphere. Thus Zmec(u>), the impedance of the middle ear cavities, was short circuited to 

acoustic ground. In the normal condition there are a set of cavities behind the eardrum called 

the middle ear cavities (MEC). Experimental observations on cat (Moller, 1965; Lynch, 1981; 

Tonndorf and Pastaci, 1986), rabbit (Moller, 1965), guinea pig (Zwislocki, 1963) and other 

animals, indicate that these cavities have an important effect on the impedance measured at 

the eardrum. By making modifications to the middle ear cavities, systematic changes in the 

middle ear transmission have been observed in cat (Moller, 1965; Guinan and Peake, 1967; 

Tonndorf and Pastaci, 1986), chinchilla (Ruggero et al., 1990), as well as other animals. Thus a 

middle ear model, without the middle ear cavities, would be an incomplete one.

Despite these experimental observations, it is not clear what role the middle ear cavities play 

in auditory performance. Anatomical observations indicate that there are considerable differences 

in sizes and shapes of the MEC in various species. Consider the following two experimental 

observations. First, impedance measurements at the eardrum of many different animals indicates 

that there is a high Q (=center frequency/bandwidth) resonance due to the MEC. It has been 

observed that the high Q resonance in impedance is accompanied by a comparable decrease in both 

the stapes motion (Guinan and Peake, 1967) and the cochlear microphonic (Dallos, 1973. p. 114 1
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Second, the pressure transfer function measured from free-field to the cat tympanic membrane 

indicates that there is a pressure gain of approximately 15-20 dB near 3.5-4 kHz (Wiener et al., 

1966). It can be argued that the auditory threshold, when measured with respect to the pressure 

at the eardrum, is increased due to the bulla resonance. However, when the auditory threshold 

is measured with respect to the free-field pressure then the auditory threshold remains relatively 

“flat” in the frequency region of the bulla resonance. Putting these two experimental observations 

together one might conclude that the effect of the earcanal pressure gain is compromised by the 

increase in impedance due to the MEC (Dallos, 1973, pp 117-126). This line of reasoning relies 

on the observation that there is no increase in the auditory threshold that is comparable to the 

resonance observed in the impedance.

A closer inspection of the auditory threshold data shows that it is sampled but at a few 

frequency points. Owing to the sharp resonance in the impedance, if a threshold measurement is 

not made at the frequency at which resonance occurs, then the auditory threshold might appear 

somewhat “flat.”

Another possible reason for the MEC might be that they compensate for certain aspects of 

middle ear anatomy that the eardrum and ossicles were not to able to adapt to. For example, in 

order to increase the stiffness measured at the eardrum either the stiffness of the eardrum can be 

increased, or a volume having a stiffness greater than that of eardrum can be placed behind the 

eardrum. Thus without the middle ear cavities, either the auditory threshold of a given species 

would be somewhat different, particularly at frequencies below approximately 4-5 kHz, or the 

middle ear anatomy would have evolved to be somewhat different than what it is.

One of the aims of this section is to formulate a model for the MEC based on the dimensions 

of those cavities. One motivation for this is to show that signal processing performed on acoustic
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signals by the middle ear cavities, in the cat auditory pathway, depends mostly on the particular 

geometry of the MEC and the interconnection between those cavities.

4.7.1 A physically based model for the middle ear cavities

In the cat, the tympanic membrane is part of the lateral wall of the tympanic cavity. The middle 

ear ossicles and the cochlea are contained within the tympanic cavity. In the normal condition, the 

tympanic cavity is separated from the bulla cavity by a bony septum. A small oval shaped hole in 

the bony septum allows communication between the two cavities.

A model for representing cavities with variable cross-sectional areas will be developed in 

Chapter 5. This model is called the chain-matrix model for cavities. The validity of the chain- 

matrix model will be experimentally verified in that chapter of the thesis. In this chapter we will 

use that model to represent the middle ear cavities. In summary, our model represents a cavity 

having variable cross-sectional area, as a series of tubes each of constant diameter. Each of these 

tubes is represented as a ABCD chain-matrix. As in the cochlea model, the matrices include 

viscous and thermal boundary layer effects on the surface of the cavity walls. Our model explicitly 

takes into account two-dimensional effects due to sudden jumps in cross-sectional areas. This is 

done by including the so called “Karal correction" (Kara!, 1953). Using this model, it will be show 

that dimensions of the MEC play an important role when studying acoustic properties of the MEC.

The shape of the cat bulla and tympanic cavities are complicated. The more accurately one can 

specify the dimensions of the cavities, the more accurate the model approximation. As a first order 

approximation we represent the bulla cavity as a cylindrical tube with length h c and diameter d>,c. 

The tympanic cavity is similarly represented with length ltc and diameter dtc- The bony septum, 

with the hole that forms the foramen, will be represented as an a tube of length I/  and diameter d/. 

In the past, middle ear cavities have been modeled by compliance representing the volumes
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of the cavities (Zwislocki, 1962; Peake and Guinan, 1967; Moller, 1983; Shera and Zweig, 1989); 

lengths and diameter were not explicitly considered to be important. Also, losses in previous 

models were based on heuristic parameter fits to observed impedances. Since our model for 

the middle ear cavities includes visco-thermal boundary layer effects at the walls of the cavities, 

the losses arise in a natural manner in this model. A limitation of previous lumped-parameter 

representations for the MEC is that they are valid only in a limited frequency region of below 

6-8 kHz (Lynch, 1981, pp 160-164). The chain-matrix formulation is a distributed-parameter 

representation and thus it can be expected to hold at frequencies above 8-10 kHz.

4.7.2 Estimating parameters for the middle ear cavities

Lynch (1981) found mean volumetric measurements on 12 cat bulla and tympanic cavities to 

be 0.217 cm3 and 0.675 cm3, with standard deviations of 0.056 and cm3 and 0.141 cm3. To 

our knowledge, more detailed geometrical data, such as the surface area of the cavities or the 

approximate lengths and diameters of each cavity, are not available in the literature. Consequently, 

we have chosen the lengths and diameters to match the poles and zeros of the measured impedances 

of the middle ear cavities. This will be done under the constraint of the measured volumes.

Based on pressure measurements in the MEC and at the eardrum, the impedance of the MEC 

for the “normal” condition as well as “surgically modified” conditions have been estimated (Lynch. 

1981, Chap. n . Figs. 24-26). The particular cases studied were:

• Intact MEC -  Zmec

• Bulla cavity opened widely -  Zt,0

• Plugged foramen -  Zpj.

We briefly summarize Lynch’s results: Measurements of the intact middle ear cavity impedance
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(Zmcc) indicates the presence of a high Q pole (resonance) near 4.5 kHz and a zero (anti-resonance) 

near 2.2 kHz. For frequencies below «  2 kHz, Zmec is compliance dominated. For frequencies 

above «  5 kHz, Zmec has some minor ‘fluctuations’ but is for the most part compliance dominated. 

When the bulla cavity is opened widely, and the foramen is left intact, then the zero disappears and 

the pole shifts to a lower frequency of approximately 3.5 kHz. For frequencies below «  3 kHz, 

Zbo is mass dominated. For frequencies above «  4 kHz, Zb0 also has some minor ‘fluctuations' 

in it but is largely compliance dominated. The Q of Zbo appears to be slightly greater than that 

of Zmec. When the foramen is closed-off, by sealing it with a plug, then the resonance in the 

measured impedance is no longer observed. For frequencies below «  15 kHz Zpj  is compliance 

dominated.

There are three lengths (/tc, I/ ,  k c) and three diameters (dtc, d/ ,  dbc) that need to be evaluated
v

in order to calculate the impedance of our middle ear cavity model. In an attempt to uniquely 

identify the dimensions of the cavities, we have attempted to model the impedance for all three 

cases.

Since Zpj  is compliance dominated for most of the measured frequency region, we can only 

extract information regarding the volume of the tympanic cavity. We are not modeling any specific 

cavity impedances and thus we can let this be a free parameter (confined to Lynch's measured 

volumetric range for the tympanic cavity). This leaves us with Zbo and Zmec to model.

Recall that our model for the MEC consists of a cascade of three chain-matrices. By 

assuming an infinite impedance for the radiation load and multiplying out the three chain-matriccs 

one obtains, after some algebraic manipulations, an analytic expression for the driving point 

impedance

Z mec( w ) = ^ ,  1 4 V, .
£>(w)
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where

JV(w) = 1 +  |^ t a n h ( 72/2)tanh(73/3) +  |^ t a n h ( 7 i/i)tanh(72/2)

7
tanh(7 i / j ) tanh(73/3), (4.9b)

and

D (u) = ^ 0i[-^ -tanh (7 i/i) +  tanh(73/3) 4- •^ -tan h (7 i /1)tanh(72/2)
&ol " o l

Z  2
+ tanh(7 i / i ) tanh(72/2) tanh(73/3)]. (4.9c)

60S

In the above equation 7 , is the propagation constant and /,• is the length of the i th tube. The 

characteristic impedance for each tube Z01 is paca/A i, where A, is the area of the tube. The 

poles of Zmec are at frequencies where the denominator of Eq. (4.9) is zero. The zeros of Zmrc 

are at frequencies where the numerator of Eq. (4.9) is zero. Due to the complex nature of the 

numerator and denominator of Eq. (4.9) it is difficult get an intuitive feel for how the zeros and 

poles of Zmec are related to the dimensions of the cavities. Equation (4.9) for Zmec is without the 

Karal correction. If Karal correction is included in the analytic solution then the equation becomes 

intractably complicated.

The anatomical difference between Zmec and Z<,0 is that there is a hole in the later case while 

that hole is replaced by bone when the MEC are intact. From a model point of view this translates 

into a radiation load of a hole for the open bulla case and impedance of bone for the intact middle 

ear cavity case. Thus an equation similar to that of Eq. (4.9) can be written for Z(,0. However, such 

an equation would be more complicated than that for Zmec. Since an analytic expression for Z,„, 

did not give us much of an insight, we have not attempted to derive an analytic expression for /* 

Note that the cavity dimensions do not change when the bulla has been opened. Thus model mg
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Tabic 4.2: Estimated lengths, diameters, and volumes for the middle ear cavities.

diameter (cm) length (cm) volume (cmJ)
Tympanic cavity 0.7 0.7 0.27
Foramen 0.2 0.075 2.3 x 10"3
Bulla cavity 1.0 0.85 0.67

the two cases does not seem to help determine the dimensions of the cavities uniquely. However, 

by modeling both cases with a single set of cavity dimensions, one has greater confidence in the 

parameters obtained.

The cavity dimensions were adjusted until the model poles and zeros were within the 

experimentally observed poles and zeros of Zmec. The parameters chosen are listed in Table 4.2. 

Results for the intact middle ear cavity case and two “surgical modifications” to the MEC are 

shown in Fig. 4.16 . Also shown in Fig. 4.16 is the intact middle ear cavity impedance Zmec 

without the Karal correction. The impedances shown in Fig. 4.16 have been normalized to the 

characteristic impedance of the tympanic cavity (paca/A t «  106, where A tc is cross-sectional area 

of the tympanic cavity).

Also shown in Fig. 4.16 is the real part of the middle ear cavity impedance. In the model the 

viscous and thermal boundary layer effects on the surface of the middle ear cavity impedance give 

rise to the real part of the impedance. Measurements of the cat middle ear cavity surface area are 

not know. If such measurements were know, then they would help further constrain the parameters 

of the middle ear cavity model.

A few general statements, in the spirit of perturbation analysis, can be made at this point 

regarding the effect of the dimensions of the cavities on Zmec. As expected, increasing either or 

he will decrease the first zero frequency (/*) and the first pole frequency ( /p) of Zmec. Increasing
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Figure 4.16: Modeling the middle ear cavities that have been "surgically modified": Zmec is the 
impedance of the intact MEC; it was computed by including the effects of the non-planer wave 
propagation by using the Karal correction. Zmec (NK) is also for the intact MEC but without 
the effect of the Karal correction. Zj0 is the impedance of the bulla open condition. ZPf  is the 
impedance of the plugged foramen condition.
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he shifts f p more than it does f z. Increasing dtc increases /*, but decreases f p. Increasing d ^  

decreases both /* and f p. In our parameter modifications we found f z and f p to be very sensitive 

to the foramen dimensions. Increasing the length //  of the foramen resulted in a decrease in f z 

and a latger shift in f p. Increasing dj increased both f z and f p. Including the Karal correction 

in the model shifts both f p and f z to lower frequencies by almost half an octave. Since the Karal 

correction is a function of the ratio of the areas, changing any of the diameters will have an effect 

on the Karal correction.

4.7.3 The foramen

We have observed that the foramen dimensions have an important effect on the impedance behind 

the eardrum. We presently investigate what possible role this curious structure might play in 

shaping the acoustic properties of the middle ear cavities.

Measurements of the foramen on five cats indicate 0.2 cm < d j < 0.3 cm, and 0.15 cm < 

If < 0.2 cm  (Lynch, 1981, p. 165). Based on these measurements. Lynch modeled the foramen 

as a cylindrical tube with length 0.2 cm and diameter 0.3 cm. Tonndorf and Pastaci (1986) 

hypothesized that the foramen is a tube “practically without depth”. Our own model finding is 

that the foramen is approximately 0.075 cm in depth (approximately the thickness of the average 

human thumbnail) is consistent with Tonndorf and Pastaci’s hypothesis regarding the foramen.

In our model, the tympanic cavity, the foramen, and the bulla cavity are each represented as a 

chain-matrix. These matrices are formulated under the assumption of plane-wave propagation in 

cylindrical tubes. Table 4.2 shows that there is a decrease in diameter in going from the tympanic 

cavity to the foramen. There is also an increase in diameter in going from the foramen to the 

bulla cavity. The sudden changes in diameter (or equivalently in area) give rise to effects that are 

not modeled by theories of plane-wave propagation. As is experimentally shown in Chapter 5 the
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two-dimensional effects can be modeled if one includes the so called Karal corrections to the plane 

wave theory.

Effects due to the Karal correction can most easily be illustrated in the reflectance domain. 

The impedance of Fig. 4.16 . when converted to the reflectance domain, is shown in Fig. 4.17 

. There we have plotted the group delay [see Eq. (4.7)] of the reflectance instead of the phase. 

A wave launched at the input of a cavity will be reflected and will propagate back towards the 

transducer/microphone assembly when it encounters a change in impedance. The group delay is a 

measure of the round trip travel time of the reflected wave.

In the open bulla case, the magnitude of the reflectance is 0.95 below 6 kHz, at which point 

it starts to decrease, reaching a minimum of «  0.62 near 8 kHz. The reflectance magnitude is »  

0.97 again for frequencies above 9.5 kHz. We used the impedance of an infinite baffle (Beranek, 

1954, p. 124) for the radiation load at the end of the bulla cavity. The low value of the reflectance 

magnitude in the 8 kHz region is due to losses in the the real part of the radiation impedance. The 

magnitude of the reflectance is greater than about 0.95 for all other cases considered.

In the plugged foramen case, a reflectance occurs due to the end of a straight cylindrical tube. 

Thus the group delay shows a “flat" response. One can recover the acoustic length at a given 

frequency according to:

La(f)  = T d I l (4.10)

Where rgd (f)  is the group delay at frequency / .  From Fig. 4.17 we estimate that rgd is 0.0403 

for the plugged foramen case. The calculated acoustic length of 0.6997 cm  is in close agreement 

to the physical length of 0.7 cm. The group delay, and thus the acoustic length, is frequency 

.dependent for the other cases. It can be shown that the group delay is periodic in frequency. For 

high frequencies (between 10-15 kHz) the group delay for the other three cases approaches the
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Figure 4.17: Middle ear cavity reflectance: Note that the group delay of the reflectance (in milli 
seconds) is shown in the lower panel. When the Karal correction is included in the calculatioas 
then the group delay increases, by as much as a factor of two, in the frequency region between 
400 Hz to about 3.5 kHz. This indicates that the effect of the non-planar wave propagation is to 
increase the acoustic length of the MEC by as much as a factor of two. For frequencies below I 
kHz, the open bulla case has an acoustic length greater than when it is closed. For frequencies 
between 10-15 kHz the other cavities behave acoustically as if they were plugged at the foramen.
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group delay of the plugged foramen case. This indicates that in this frequency region, the MEC 

behave as if they were plugged at the foramen.

The total physical length for the two cavities and the foramen is 1.625 cm. For the open 

bulla case rgi  decreases from approximately 0.23 m s for low frequencies to less than 0.075 ms at 

frequencies above 5 kHz. This correspond to a decrease in the acoustic length from about 4 cm at 

low frequencies to less than 1.3 cm for frequencies above 5 kHz. At low frequencies, the acoustic 

length is greater than the physical length because the bulla cavity is open and thus sound is not 

reflected back towards the source at the end of the cavity. For frequencies above 7 kHz, the group 

delay starts to decrease rapidly and is approximately -0.045 m s at 7.8 kHz. Above this frequency 

the group delay increases, eventually becoming positive again. Measures of group delay are not 

always meaningful when the function being analyzed is not an all-pass function (Papoulis, 1962). 

Since the reflectance magnitude is signiflcantly less than one in the frequency region between 6 

kHz and 9.5 kHz, it is not an all-pass function in that frequency region and thus the negative group 

delay.

Also shown in Fig. 4.17 are model computations for Z mec with the Karal correction and, for 

comparison, without the Karal correction. The group delay for the Karal correction case is greater 

than the case without Karal correction for frequencies above «  400 Hz and below «  3.5 kHz. 

Thus the Karal correction increases the effective acoustic length o f the cavities in that frequency 

region. The maximum group delay for the no Karal correction case is approximately 0.18 ms, 

corresponding to an acoustic length of 3.123 cm, at about 3 kHz. The maximum group delay for 

the case with the Karal correction is «  0.36 ms, corresponding to an acoustic length of 6.246 cm, 

at about 2.3 kHz. Thus, the Karal correction increases the acoustic length by a factor of two near

2.3 kHz. Above 3.5 kHz r3j ( / )  for the Karal correction case is slightly less than the case without
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the Karal correction.

Having analyzed some of acoustical properties of the foramen we wish to address the question: 

Why is the bony septum in the cat middle ear cavity there? To answer this question we compute 

the cavity model for the case when bulla is closed but without the bony septum. This is compared 

to the case when the MEC is intact. Figure 4.18 shows these model computations in the impedance 

domain. Note that model computations are for frequencies up to 30 kHz. This was done to look at 

the effect of the septum at very high frequencies.

In making these model computations, the diameter of the foramen was changed from its 

previous value of 0.2 cm to 1.0 cm corresponding to the diameter of the bulla cavity (this simulates 

the scraping away of the bony septum). With the bony septum removed there are two resonant 

frequencies, one at about 10 kHz and another one at about 20 kHz, When a bony septum is 

introduced in the MEC then the 10 kHz resonance shifts to a lower frequency of about 4.5 kHz 

and the 20 kHz resonance shifts to a higher frequency of about 26 kHz.

The foregoing analysis suggests that the foramen in the bony septum of the cat is there, in 

part, to increase the effective acoustic length of the middle ear cavities in a limited frequency 

region. The net result of this increased acoustic length is a shift in the bulla resonance frequency. 

The structure of the bony septum is such that the lower bulla resonant frequency shifts down in 

frequency by a factor of about 2.2, and the upper bulla resonant frequency shifts up in frequency 

by a factor of about 1.3. The geometry of the cat middle ear cavities are not exactly those of 

cylindrical tubes and thus the exact effect of the foramen can be expected to be slightly different 

from these predictions. As is seen by the close correspondence in the low frequency (below 

1 kHz) limit of both model computations, the cavity resonances are modified virtually without 

affecting the total volume of the cavity. To our knowledge impedance measurements of animal
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Figure 4.18: Comparison of middle ear cavity impedance with the bony septum and without the 
bony septum: Note that model computations are shown for frequencies up to 30 kHz. As shown in 
the previously there is bulla resonance near 4.3 kHz. This figure clearly shows that with the bony 
septum intact, there is a second bulla resonance near 26 kHz. When the bony septum is removed, 
the first bulla resonance shifts up to about 10.2 kHz, while the second bulla resonance shifts down 
to about 20 kHz. The low frequency limit (below 1 kHz) of the impedance indicates that the 
volumes of the two cavities are virtually identical. The slight difference is due to the relatively 
small volume of the bony septum.
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MEC without the bony septum and with bulla cavity closed do not exist in the literature.

4.8 A comprehensive model for the cat middle ear

A model for the impedance measured at the eardrum with the assumption that the middle ear 

cavities are exposed to the atmosphere has been developed. In addition, a model for the middle 

ear cavities with the assumption that the eardrum is removed has been formulated. In the normal 

case these two impedances interact with each other in a way that significantly affects the hearing 

ability of any given animal. In this section the two model impedances are combined into a single 

model for the cat middle ear.

4.8.1 Combining the eardrum and middle ear cavity impedances

The long standing hypothesis for combining the impedance of the MEC and the eardrum impedance 

has been that the two form a series network. Examples of such a configuration can be found 

in models formulated by Zwislocki (1962), Moller (1965), Peake and Guinan (1967), Shaw and 

Stinson (1983), and others. The validity of this hypothesis is presently examined.

Recall that the MEC are a cascade of two cavities with the bony septum separating them. 

The series network model hypothesis requires that the pressure seen by the round window is the 

pressure of the tympanic cavity. In most animals with a bony septum between the MEC, the round 

window is located in the bulla cavity (Dallos, 1973, p. 5). Therefore the actual pressure seen by 

the round window is that of the bulla cavity. This conflict would seem to make the series model 

circumspect.

A definitive test of this issue would be to compare the eardrum impedance with the round 

window in the bulla cavity, and with the round window moved to the tympanic cavity. It is however 

not possible to do such an experiment. An alternative to this is to look at other measurements and
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model results. The later will be discussed in the next section. Since we are questioning the effect 

of the bulla cavity pressure versus the tympanic cavity pressure, it would be important to consider 

the relative amplitude of these quantities. For example, if the tympanic cavity pressure relative 

to the eardrum pressure is small, and the bulla cavity pressure relative to the eardrum pressure 

is also relatively small, then the location of the round window is not likely to affect the eardrum 

impedance. On the other hand, if the pressures in either cavities are comparable to the pressure at 

the eardrum, then one can expect there to be some effect due to the particular location of the round 

window.

Lynch (1981, Chap. II, Figs. 14-16) measured the pressure in the tympanic cavity and the bulla 

cavity relative to the eardrum pressure (Ptc/Pec and Pbc/Pec)• Magnitudes of both Pbc/Pec and 

P t c / P e c  are approximately -1 0  dB for frequencies below 1 kHz. Above about 1 kHz, \ P t c / P e c \ 

starts to decrease reaching a minimum of approximately -31  dB at 2.1 kHz and then increasing to 

about 2 dB at 5 kHz. Above 5 kHz, \ P t c / P e c \  decreases; between 1 0 -2 0  kHz, it fluctuates in the 

- lO d B  vicinity. On the other hand \ P b c / P e c \  is -lO dB , for frequencies up 5 kHz. Above 5 kHz, 

\ P b c / P e c \  has two sharp minima; one at 8 kHz with a value of -4 4  dB, and one at 18 kHz with a 

value of -3 5  dB. At about 12 kHz and 25 kHz, there are two maxima in \ P b c / P e c \  with values for 

both being approximately -1 0  dB.

Our interpretation of the above experimental observations are that the pressure in the tympanic 

cavity is comparable to the pressure at the eardrum for frequencies between 3-7 kHz. The pressure 

in the bulla cavity is typically less than -1 0  dB. Thus the effect of putting the round window 

in the tympanic cavity is likely to result in eardrum impedance calculation errors more in ihc 

3-7 kHz frequency region than the other frequencies. Thus we conclude that the series model 

for the eardrum impedance and MEC impedance is reasonable except possibly in the 3-7 kHz
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frequency region. It is conceivable that placing the round window in the tympanic cavity has a 

more pronounced effect on the transfer functions, such as that between the eardrum pressure and 

scala vestibule or scala tympani pressure. We have not attempted to analyze this yet. Peake et 

al. (1991) have recently hypothesized that the pressure differences between the oval window and 

the round window accounts for the residual hearing above about 2 kHz when there is no sound 

stimulus to the stapes via the ossicular chain (i.e. under the conditions of missing or interrupted 

ossicular chain due to damage).

4.8.2 Comparison with data

The middle ear cavity impedance for the intact case Zmec and with the two “suigical modifications" 

shown in Fig. 4.16 were first unnormalized by the characteristic impedance of the tympanic cavity 

(pac0/i4ic). The eardrum impedance calculations Z'ec shown in Fig. 4.11 were unnormalized 

by the characteristic impedance of the transducer tube (paca/A t). Under the assumption that the 

series network model for Z \c and Z mec is a valid one, we have combined the two unnormalized 

impedances. The resulting model impedances, renormalized by the characteristic impedance of 

the transducer tube, are shown in Fig. 4.19.

Lynch made measurements on several cats with "surgical modifications" to the MEC with 

the eardrum impedance intact. We will thus compare our model calculations with Lynch's 

measurements.

First, Lynch’s results are briefly summarized: Measurements of the intact MEC (2vnec) indicate 

the presence of a high Q resonance in the impedance. The resonant frequency varied from 4-5 

kHz while the Qj, defined to be the ratio of the center frequency to the - 3  dB bandwidth, varied 

from 11.0 to 18.3, with a mean of 14.0. When the bulla cavity is opened widely then the resonance 

in the measured impedance (Z 'bo) shifts to a lower frequency of approximately 3.5 kHz. As is
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Figure 4.19: Eardrum impedance with various manipulations on the middle ear cavity: Z ^ -  is 
eardrum impedance with open cavities. Each of the middle ear cavity impedances of Fig. 4.16 
were combined with Zdoc under the assumption that the two impedances can be connected in series. 
These model computations are in good agreement with cat eardrum impedance measurements 
made with similar modifications on the MEC by Lynch (1981).
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to be expected, opening of the bulla is accompanied by a decrease in impedance of about 3 dB, 

relative to Z'mec, at frequencies below approximately 1 kHz. According to Chapter II, Fig. 8 of 

Lynch’s thesis the Qi of z L  appears to be slightly greater than that of Z'mec. When the foramen 

is closed-off, by sealing it with a plug, then the resonance in the measured impedance is no 

longer observed. This time the impedance increases by approximately 6 dB, relative to Z'mec, for 

frequencies below approximately 2 kHz.

Although Lynch made the measurements on several cats, the measurements shown for cat 

TJL-53L in Chapter II, Fig. 8 of his thesis, are representative of his findings. We will thus 

refer to that figure. Measurements on a specific cat, rather than averaged measurements of 

several cats, is preferred because averaging tends to “smear-out” the features we are interested in 

modeling. For comparison to our model calculations we also list the magnitude of the measured 

impedance at a few important frequencies for that particular cat. \Zmec\at 100 Hz is approximately

6.3 x 103 dyne -  sec/cm 5. From now on we will use kSI to denote 103 dyne -  sec/cm 5. \Zmec\ 

is «  4.4 kCl at the resonant frequency of about 4.3 kHz. \Zb0\ is «  3.6 fcfi at the resonant 

frequency of about 3.1 kHz.

The phase of the impedance calculations shown in Fig. 4.19 is «  -9 0 ° for frequencies 

below 300 Hz for all three calculations. This indicates that all three impedances are compliance 

dominated below 300 Hz. Zpj  appears to be compliance dominated for frequencies up to 1 kHz. 

The normalized magnitude of Zmec at 100 Hz of «  10.1 corresponds to an impedance of 4.05 kQ. 

This is a factor of about 0.64 (-3 .88  dB) smaller than the measured data.

The point of resonance for Zmec occurs at 4.2 kHz with a normalized magnitude of 9.3. This 

corresponds to an impedance of «  3.7 k fl  (hence forth, references to actual impedances rather 

than normalized impedance will be made). The calculated Qi for the intact MEC is a  20. This
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Qi is higher than most of the measured Qi's. The magnitude of Zb0 is «  5.2 kQ  at the resonant 

frequency of about 3.1 kHz. The calculated Q3 for the open bulla case is «  10. The model 

calculations show that the relative magnitude of Zb0 to be greater than that of Zmec by a factor of

1.4 (2.9 dB) at the resonant frequency. In comparison with the measured data, the magnitude of 

Zb0 is less than the magnitude of Zmec by a factor of 0.82 (-1 .72  dB).

At the resonant frequencies both intact cavity impedance Z'mec and bulla open impedance 

z L  go through a reversal in phase that is characteristic of resonators. In the region where the 

resonances of the MEC are dominant, the real part of the eardrum impedance with intact MEC 

(3?e[Z^,ec]) and the real part of the eardrum impedance with bulla cavity open ($ie[Z'bo\) are greater 

than just the eardrum impedance {Zdoc) by almost an order of magnitude.

For stimulus frequencies above 5 - 6  kHz, the calculated eardrum impedance with the MEC is 

slightly lower. Deviations, of less than 7 dB between the impedance measured with the MEC intact 

and with the MEC completely exposed to the atmosphere occur in the frequency region between 5 

-  20 kHz (Lynch, 1981, Chap. II, Fig. 8). Trends in the model and data are in agreement, further 

indicating that the assumption of the series model is a valid one.

In the previous figures we have looked at impedances as well as reflectance; we presently 

analyze the effect of the MEC from the reflectance perspective. Figure 4.20 shows the reflectance 

corresponding to the impedance of Fig. 4.19 . When the magnitudes of the impedances and the 

magnitude of the reflectance are compared, the following general observation is made: whenever 

the impedance is increased due to the MEC, or some manipulation of the MEC, the magnitude 

of the reflectance increases. For example, at the frequencies were there are resonances in Zmrt. 

and Zbo, and thus an increase in impedance, the reflectance magnitude increases from about 0.2 to 

about 0.9.
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Figure 4.20: The manipulations o f the middle ear cavities viewed from the reflectance domain: 
Zdoc is for the open cavities case. Generally speaking, for frequencies below about 6 kHz a cavity 
behind the eardrum results in an increase in the reflectance magnitude. When the cavity behind 
the eardrum is closed, the phase of the reflectance decreases.
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Furthermore, for stimulus frequencies below about 6 kHz, the effect of placing any of the MEC 

behind the eardrum increases the reflectance magnitude. The only exception to this is in 

where the MEC had the effect of decreasing the reflectance in the limited frequency region of 1.7 -  

2.2 kHz. For frequencies between 6.4 -  9 kHz the effect of the MEC is to reduce the magnitude of 

the reflectance. Above about 9 kHz the MEC do not have an effect on the reflectance magnitude. 

However, differences in the phase of the reflectance are noted.

With the intact MEC, and the plugged foramen cavity, the phase of the reflectance is between 

-0.757T and 0.25 tt. With a bulla open cavity or when there is no middle ear cavity at all, the phase 

is between Ott and -2 .2 5 tt. Thus having a closed cavity behind the eardrum results in an increase 

in the phase of the reflectance.

4.9 Summary

A middle ear model based on anatomical considerations has been formulated. To uniquely 

estimate the parameters of the proposed model, eardrum impedance measured with various 

“surgical modifications” to the cochlea and ossicles are modeled. In addition, a model based on 

the lengths and diameters of the middle ear cavities has been investigated.

The main consideration of the present work has been to estimate acoustic parameters for the cat 

anatomy. The model and the outlined methodology, for estimating the parameters of the model, is 

general enough that it can be used to model the anatomy of the human middle ear, as well as other 

animals, provided that eardrum impedance measurements with specific “surgical modificatioas" 

are available.

The middle ear model started with the most simple case of the “interrupted incus" first and 

proceeded to the most complicated case of the intact cochlea, ossicles, and middle ear cavities
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termed the “comprehensive model.” As we proceeded, the following conclusions were reached at 

each step:

• Interrupted incus: For stimulus frequencies between 100 Hz to 7 kHz at most 10% of the 

incident wave is dissipated by the eardrum and the ossicles: the rest is reflected back into the 

earcanal. For frequencies between 8-12 kHz, up to 75% of the incident wave is dissipated 

by the incudo-malleolar joint.

Model fit to measured |i2“ | is excellent. Model phase of R “c is quite good for frequencies 

below 10 kHz. For frequencies between 10 kHz and 15 kHz the model phase of R"c is 

greater that the data by as much as ?r/2, indicating that at these frequencies a more accurate 

model for the uncoupled portion of the eardrum is needed. Due to the paucity of data 

at such high frequencies, a formulation of a more accurate eardrum model does not seem 

feasible at this time.

• Drained cochlea: For frequencies between 300 Hz and 7 kHz the incident wave absorbed 

by the annular ligament is at most approximately 10%.

•  Intact ossicles and cochlea: For the “intact” case, the load to the stapes is the impedance 

of the cochlea. The cochlear input impedance has an important effect on the impedance 

measured at the eardrum. In the frequency region between 300 Hz and 8 kHz as much as 

80% of the incident wave is absorbed by the cochlea; the maximum absorption occurred near 

1.6 kHz. Some of the fine structure observed in the eardrum reflectance can be attributed 

to the fine structure observed in the magnitude as well as the phase of the cochlear input 

impedance. Thus an accurate model o f the cochlear input impedance is very important in 

order to be able to model the eardrum impedance and reflectance.
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In the past, researchers have modeled the eardrum impedance using an inaccurate representa­

tion for the cochlea. What those input impedance cochlear models lacked was compensated 

for by the parameters of their middle ear model. Thus when modeling the middle ear, 

an inaccurate representation of the cochlear input impedance will result in an inaccurate 

representation for the middle ear.

•  Middle ear cavities: A model for the middle ear cavities based on lengths and diameters 

of the cavities has been developed. The parameters estimated are consistent with measured 

volumes for those cavities by other researchers. With the intact middle ear cavities there is 

a resonant frequency of about 4.5 kHz in the middle ear cavity impedance. When the bulla 

cavity is open the resonant frequency shifts to about 3.3 kHz. When the foramen is plugged 

then there is a zero in the driving point impedance at about 12 kHz. It is also shown that, for 

the intact case, there is a second bulla resonance in the 26 kHz frequency region that has not 

been previously measured.

Non-planar wave propagation resulting from sudden changes in area due to the foramen were 

taken into account by using the Karal correction to the plane-wave theory. Acoustically the 

effect of the non-planar wave propagation is to increase the effective length of the cavities 

by as much as a factor of two in the frequency region between 500 Hz and 3.6 kHz, for a 

particular set of cavity dimensions.

• Losses in the model: Losses in the middle ear cavity model are due to visco-thermal 

boundary layer effects at the surface of the cavity walls. Future measurements of the middle 

ear cavity surface area would help to further constrain the parameters of the model.

• The bony septum: The effect of removing the cat bony septum is to shift the first bulla
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resonance from about 4.5 kHz to approximately 10 kHz, while the second bulla resonance 

shifts from 26 kHz to approximately 20 kHz.

• The comprehensive model: The series model for combining the impedance of the eardrum, 

ossicles and cochlea with the impedance of the MEC has been reexamined. It has been 

determined that the errors made in making such an assumption are insignificant from an 

impedance measurement point of view. That the series model assumption may play a more 

significant role in transfer function calculations is debatable and needs further analysis.

From the eardrum reflectance point of view, having a middle ear cavity behind the eardrum 

results in an increase in the reflectance magnitude. This indicates that the MEC could have 

a small but detrimental effect on the hearing ability of a given species. Clearly, this cannot 

be the complete story and one must look at other measures to get more insight about the 

effects of the MEC. Examples of these include the transfer function between the eardrum 

pressure and the stapes displacement, the transfer function between the eardrum pressure 

and the scala vestibule pressure, and the transfer function between the eardrum pressure and 

cochlear microphonic at the round window.
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Chapter 5

Cylindrical cavities with area 
discontinuities: measurements and 
model

Introduction

In Chapter 4 a chain-matrix model for the middle ear cavities was used. It needs to be proven that 

such a model is an accurate representation for the middle ear cavities and for the ear canal. To prove 

that the middle ear cavity model used in Chapter 4 is tenable we make impedance measurements 

on several cavities. The resulting measurements are compared to model computations.

The goals of this chapter are two folds. First, a method of accurately measuring acoustic 

impedances is described. Briefly, the Thevenin equivalent parameters of the pressure transducer 

using a four-cavity calibration method of Allen (1986) for frequencies up to 15 kHz is obtained. 

* The calibrated transducer is then used to measure the unknown impedance. Second, a general 

method of modeling the measured impedances of cavities with a varying cross sectional area is

*This measurement technique is limited by the upper-frequency limit of the particular transducer used. The Sokolich 
transducer used in (Allen. 1986) had an upper- frequency break point of «  20 kHz. Due to their readily commercial 
availability, we have used the ER-2 from Etymdtic Research to make the measurements reported in the present Chapter.
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described (Puria and Allen, 1991a). The model is formulated so that the following effects are 

explicitly accounted for: (a) variations in cross sectional area, (b) non-planar wave propagation 

due a jump in cross sectional area, (c) viscous and thermal losses at the walls, as well as (d) finite 

wall impedances.

5.1 Acoustic Impedance Measurements

Regardless of the system being described, be it electrical, mechanical, acoustical, or biological, 

differential equations are commonly used to describe the dynamics of that system. We are interested 

in acoustic measurements. Since differential equations describing acoustic and electrical systems 

parallel each other, one can be described in terms of the other by use of dynamical analogies 

(Beranek, 1954; Olson, 1958; Pierce, 1989). Pressure and volume velocity in an acoustical system 

correspond to voltage and current in an electrical circuit. From these two analogies one can readily 

define the acoustic impedance given the pressure P and the volume velocity U

Z(w) = P {u)/U {u). (5.1)

According to this definition one must measure both the pressure and the volume velocity 

of the particular system under consideration. In general, measuring the volume velocity, with 

existing techniques such as the two-microphone method, leads to erroneous results and sometimes 

intractable artifacts, it is desirable to formulate an alternative method where only pressure 

measurements are used.

Rabinowitz (1981), and Lynch (1981) formulated such a method for measuring admittances. 

They characterized their pressure transducer in terms of a Norton equivalent circuit. An equivalent 

approach is to describe the pressure transducer in terms of its Thevenin equivalent source pressure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



145

P0 and source impedance Z0 (Allen, 1986).

In both cases, the source parameters are evaluated by making pressure measurements on 

several acoustic loads on the transducer. The impedances of the acoustic loads are either know or 

can be computed based on the dimensions of the cavity. The source parameters are obtained by 

doing a minimum mean squared error fit to the measured pressures. Since there are two complex 

quantities that must be evaluated, a minimum of two complex pressure measurements on two 

different impedance loads must be made. Rabinowitz (1981), and Lynch (1981) evaluated their 

source parameters based on the two-load method. In order to overdetermine the source parameters 

Allen (1986) used the four-load method. The four-load method has the advantage of reducing the 

minimum mean squared error in the presence of measurement noise.

Once the source parameters are estimated one needs only to measure the pressure response Pr 

of the system under consideration with a high-impedance probe-tube microphone. To compute the 

impedance one simply uses the pressure divider rule

,5 '21

In Eq. (5.2) Zx is the impedance of the unknown tube normalized by the characteristic impedance 

of the calibration tubes.

In this study the four-load method will be used to measure all impedances. This method has 

been used in the past by Dear (1987) to measure the acoustic impedance of the chinchilla ear. and 

most recently it was used by Keefe and Ling (1989) to measure human ear canal impedances.

5.1.1 Thevenin equivalent source parameters

As previously mentioned, essential to the measurement of an unknown impedance is the compula­

tion of Thevenin equivalent source parameters Pa{^) and Z0(lj) of the transducer. The computation
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of these parameters from pressure measurements made on four equi-diameter calibration-cavities 

will now be described in greater detail.

For a cavity, of known length and diameter, it is possible to compute the impedance by use 

of a model. This model must take the viscous and thermal losses into account, and in addition it 

should also be computationally efficient. The model (see Appendix D) of Keefe (1984) is to be 

used to make theoretical calculations of the impedance of the cavities.

Although the physical length of each of the four closed calibration-cavities can be approximately 

measured, the acoustic distance, from the measurement plane to the end of the cavity, is not known. 

In order to estimate the Thevenin equivalent source parameters it is important to accurately 

estimate the acoustic length of each cavity. To this end an iterative procedure is used to estimate 

the acoustic length of the four cavities.

The algorithm for iteratively computing the Thevenin equivalent parameters is initiated by 

assuming the physically measured length for each of the four cavities. From the four lengths one 

obtains the four model impedances Z \ ,  Z2, Z3, Z4. Using Eq. (5.2), the relationship between the 

four impedances (Z\, Z2, Z3, Z4), the four known pressure measurements (Pi, P2 , P3 , P4 ), and 

the Thevenin parameters, can be put matrix form:

Z i  - P i P1Z 1

Z2 -P i P o P2Z2

Z3 - P 3 Z o P3Z3

Z4 - P 4 P4 Z4
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Solving this over-specified system of equations by the least-squares-method we obtain

P o 1 £ | p , f  - Z Z 'P i £ 1  Z i \ 2 P i

"  A
Z \ P i \ 2 Z i  _Z o E  P ' Z i  - £ | z , j 2

where

a = (E izi2) (E l«i!) - (E nz) (E z‘«) ■ (>•«>)
The (*) denotes the conjugate.

With the estimated P0 and Z0 and the four Z, ’s, one can compute the four resulting pressure 

responses Px by using Eq. (5.2) once again. The error norm in assuming this particular set of 

lengths is:

E = \\Px(u> )-Px(u>)\\ (5.5)

Next one does a gradient search, with respect to the four lengths, on Eq. (5.5) to find a new set 

of lengths. The procedure is repeated until the error norm in Eq. (5.5) reaches some desirable 

minimum.

The Thevenin equivalent source parameters P0{u) and Z0(uj) are subsequently used inEq. (5.2) 

to calculate any unknown impedance. The impedance obtained in this manner is an impedance 

that is normalized to the characteristic impedance (Zot) of the calibration cavities.

5.2 The chain-matrix formulation for cavities

One criterion for the formulation of the cavity model is that it must be general enough so as to be 

able to represent a cavity with an arbitrary cross-sectional area. The well known Webster-Hom 

equation is typically used to describe wave propagation in one dimension. However, for arbitrary 

area functions there are no analytical solutions to the Webster-Hom equation and thus one must
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Figure 5.1: (a)lllustration of a cavity as a cascade of constant diameter cylindrical tubes. Zmp is 
the impedance at the measurement-plane and Zri is the radiation load impedance of the cavity. In 
this example Zmp is the impedance measured at the entrance of the earcanal and Zri is the eardrum 
impedance, (b) The chain-matrix representation of the geometry shown in (a). The elements 
of each of the matrices are formulated such that visco-thermal effects and finite wall impedance 
effects are included. Non-planar wave propagation due to the jump in area are incorporated in the 
model by Z*,.

approximate the continuous area function by a series of stepped-areas.

Our model for the cavities, with an arbitrary cross-sectional area, can be best illustrated by 

way of an example. The sketch of a cavity is shown in Figure 5.1a. This simple cavity is 

approximated by four cylindrical tubes each of a different length and diameter. The impedance at 

the measurement-plane (mp) is Zmp{u). The load to the cavity is a radiation impedance termed 

Zri(uj). As an example, if Zmp were the impedance measured at the entrance of the ear canal 

then ZTi would be the impedance of the eardrum and the cylindrical tubes would approximately 

represent the earcanal.

For each cylindrical tube of length and diameter <f,-, one can write down the pressure and
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volume-velocity input-output relationship, in terms of the two-port chain-matrices:

P(x) A B P{x +  /,■)

_ U(x) C D U(x +  /,)

A B

C D
(5.6b)

(5.6a)

where the elements of the ABCD chain-matrix are

c o s h ( " j i l i )  Z 0i s i n h ( j i l i )  

j^s inh(jil i)  cosh(7ili)

The propagation constant 7 , and the characteristic impedance Z01- in Eq. (5.6b) include viscous 

and thermal losses (see Appendix D). Discussion regarding the Karal correction between each 

section represented by the inductances L ^ in Fig. 5.1 is deferred for the moment.

The chain-matrix is started at the radiation load end (z = z r/) of the cavity. The assumption 

that U (xTi) =  1 gives rise to a pressure drop P (xri) = ZTi(u). Equation (5.6) is then recursively 

calculated with the space index starting at x = z r; and “marching” towards the measurement- 

plane (z =  z mp). The ratio of P (xmp) and U(xmp) is the desired impedance Zmp(u) at the 

measurement-plane. This model is exactly analogous to that described for the cochlear model in 

Chapter 2.

5.2.1 Higher order inodes due to a discontinuity

The chain-matrix formulation, based on the assumption of plane wave propagation, described 

above is general enough so as to be able to model cavities with sudden changes in cross-sectional 

areas. However, sudden changes in cross-sectional area result in sudden changes in pressure. 

These changes in pressure, at the area discontinuities, result in non-planar wave propagation. If 

the chain-matrix formulation is to be used for cavities with varying cross-sectional areas then these 

two-dimensional effects must be taken into consideration.
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The problem of changes in propagation of sound due to a sudden change in cross-sectional area 

in both cylindrical tubes and rectangular ducts was first studied by Miles (1944; 1946a; 1946b) 

. He in essence formulated the basic equations that dictates propagation of sound near an area 

discontinuity. However, Miles did not provide any numerical results or a simplified intuitive feel 

for the effects due to a jump in area. The problem was studied again for the cylindrical tubes case 

by Karal (1953). Karal concluded that effects due to an abrupt change in area A\ (radius n )  to an 

area A i (radius ri) of cylindrical tubes introduces an additional impedance. This impedance arises 

due to higher-order modes present in the neighborhood of the area discontinuity. This impedance 

is shown to be an inductance Lk, located at the jump in area, and is a function of the ratio of the 

tube radii a  =  r i / r 2:

This inductance will be reffered to as the Karal correction. The function H (a)  is in terms of an

(1983) found a simple closed form formula for the Karal correction. Sondhi’s approximation to 

the Karal correction is:

Since measurements in the present work are in cylindrical tubes Sondhi’s approximation will be 

used. It is noted that similar lumped parameter approximations for the rectangular duct case can be 

found in (Morse and Ingard, 1968, pp483-490), (Morse and Feschbach, 1953, pp 1443-1447). The 

added inductance Lk increases the total acoustic inductance of the tube and can thus be interpreted 

as an increase in the equivalent length of the tube.

A short-coming of Karal's formulation is that it is for the inviscid case. If the viscous boundary

(5.7)

infinite sum of Bessel functions. By approximating H (a) by the straight line (1 -  a) Sondhi

8 Pa 1 1
(5.8)

3rr* \ fM  s/M
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layer thickness is sufficiently close to the tube radius then one can anticipate that there will a 

resistive component in series with the inductive component. Hudde and Letens (1985) have 

analyzed the jump in area in cylindrical tubes with yielding walls at the discontinuity, but also 

under the inviscid fluid flow assumption. For the hard wall case Hudde and Letens’s results reduce 

to those of Karal. Since the tubes we shall measure have hard walls we will not presently consider 

the formulation developed by Hudde and Letens. We shall attempt to experimentally measure the 

viscous effects due to an area discontinuity on the driving point impedance of the cavity. These 

experimental results have the potential for indicating whether further theoretical results need to 

carried out for the viscous case.

5.2.2 Non-planar wave propagation

The chain-matrix formulation with the Karal correction only takes into account non-planar wave 

propagation near the junction where there is a sudden jump in area. If there are higher-ordcr 

modes propagating in the constant diameter portion of the cylindrical tube then Eq. (5.6) must 

be modified to include those higher-order modes. Equation (5.6) is formulated for a two-port 

network. That this corresponds to wave propagation in a single transmission line is obvious. In 

keeping with the transmission line analogy each higher-order mode can be thought to propagate 

in its own transmission line. One way to incorporate calculations of the higher-order modes is to 

accordingly increase the number of ports in Eq. (5.6). This has been done for the scattering matrix 

formulation by Hudde and Letens (1985). For the range of frequencies considered in the present 

experiments, higher-order modes are believed to be evanescent and thus we will only consider 

plane wave propagation.
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5.3 Impedance measurements and model results

In this section we show impedance measurements on several cylindrical cavities. The cavities 

were designed so that there is an area discontinuity in the acoustic path. The area discontinuity 

in each cavity is made by adjoining two cylindrical tubes of different diameters together. In all 

three cases studied, the first cylindrical tube has an i.d. equal to that of the calibration cavity. The 

length of the first cavity (l\) depends on the location of the tip of the probe tube microphone. Thus 

this length varies from one experiment to the next. A second cavity is joined to the first cavity 

by a brass coupler. Regardless of the diameter of the second cavity, the same coupler is always 

used. The coupler has the same i.d. as the calibration cavity. A good seal is ensured, to prevent 

low frequency leaks, by using vacuum grease between the coupler and the second cavity that sits 

on top of the coupler. In the last example, a constriction is introduced in the acoustic path. This is 

done by inserting a disk having an o.d. identical to the i.d. of the second cavity. The disk has a 

circular opening of the desired diameter in the center. This disk is centered on top of the coupler.

Since there is a hard wall at the end of the second tube, the radiation load impedance Zr\ for 

the experiments reported in this chapter is assumed to be infinite. All cylindrical tubes used for 

this study are made of acrylic material. The physical lengths and diameters of the cavities and the 

disk to be placed on top of the coupler were measured with a caliper. These dimensions are listed 

in Table 5.1.

The acoustic measurements were made on an AT&T 6386 WGS personal computer. The 

PC was equipped with an acoustic measurement system called DSP-16+ made by the Ariel 

Corporation. One of the two D/A’s of the DSP-16+ was connected to an ER-2 pressure transducer. 

An ER-7C probe-mic system was connected to a 20 dB “low-noise” amplifier (built “in house"), 

the output of which was connected to one of the two A/D’s of the DSP-16+ board. Pressure

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



153

measurements were made by a software package known as SYSid. The stimulus generated by 

SYSid was a wide-band chirp.

The measurements were made with a maximum frequency of 15,152 Hz, sampled at 256 

frequency points. The transducer roll-off frequency is approximately 12 kHz and thus one can 

expect the data to be noisy above that frequency. For this reason we make comparisons between 

the measured data and model results for frequencies up to 12 kHz.

5.3.1 Decrease in diameter

Figure 5.2 shows model calculations and measured impedance in a cavity with a decrease in 

diameter from 0.74 cm to a diameter of 0.2 cm. The length of each cavity is 0.63 cm and 

0.96 cm. Recall that higher-order mode effects due to an area discontinuity can be accounted for 

by the Karal correction. To illustrate the relative effect of the Karal correction on the driving point 

impedance at the entrance to the cavity, the chain-matrix was computed both with the Karal (WK) 

correction and without the Karal (NK) correction. Both of these model computations are shown 

in Fig. 5.2 and all subsequent figures in this chapter. There are three different panels shown in 

Fig. 5.2 . The top panel shows the magnitude of the impedance for four orders of magnitude. The 

lower left panel shows the real part of the impedance and the lower right panel shows the phase 

of the impedance. All subsequent impedance figures in this chapter will follow this presentation 

format.

For frequencies below 7 kHz, magnitude and phase of both model computations and the 

measured impedance are virtually identical. In the model, the Karal correction does not affect the 

real part of the impedance at frequencies below 7 kHz. For frequencies between approximately 

220 Hz and 7 kHz the real part of the model computation is within the measured data by a factor of 

approximately 2.5 (8 dB). Figure 5.2 shows that below 220 Hz the real part of the measured data is
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100.0

 Model,WK
 Data (csd2)
 Model,NK

0 . 01 '-----
1 0 0 . 0

freq
9.475 0.75T

1 1 1rtl -0 .7 5 '----
1.2B+04 100.00.003

1 0 0 . 0 1.2E+04
freq freq

Figure 5.2: Impedance of cavity with decrease in diameter: dimensions (in cm) used for the model 
are l\ =  0.63, d\ =  0.74, and h  = 0.96, d.i = 0.2. The upper panel shows the magnitude of the 
normalized impedance from 100 Hz to 12 kHz. The lower left panel shows the real part of the 
impedance and the lower right panel shows the phase of the impedance. Two model computations 
are shown: model with Karal correction (WK), and the model without Karal correction (NK). All 
subsequent figures in this chapter showing impedances will follow this format. There is good 
agreement between model result and measured data when the Karal correction is included in the 
model. The real part of the impedance becomes negative for frequencies below about 200 kHz 
due to calibration errors.
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Table 5.1: Measured lengths (/) and diameters (d) of the cavities and disk used to illustrate the 
acoustic impedance measurements.

Cavity Description / (cm) d (cm)
ldl large diameter 1 1.06 1.91
sd2 small diameter 2 0.96 0.2
con constriction 0.24 0.21

negative. There are two reasons why the real part of the measured impedance becomes negative. 

The first is due to due to errors in the calibration procedure and the second is due measurement 

noise.

Figure 5.2 shows that the most apparent effect of the Karal correction, for this particular cavity, 

is in the approximate frequency region above 7 kHz and below 12 kHz. In this frequency region, 

the magnitude, real part, and the phase of the measured data as well as model calculations with the 

Karal correction are in good agreement. The main observable effect of the Karal correction, in the 

impedance domain, is to shift the pole and the zero of the impedance to a lower frequency.

As mentioned previously, transformation of impedances to the reflectance domain gives 

important insight regarding the system under consideration. We shall likewise presently analyze 

properties of cavities in the reflectance domain.

Figure 5.3 shows the impedance of Fig. 5.2 transformed to the reflectance domain using 

Eq. (4.1). Recall that model impedances have already been normalized by the characteristic 

impedance of the first cavity, and measured data has been normalized by the characteristic 

impedance of the calibration cavities (unless otherwise specified, both characteristic impedances 

will be the same when referring to normalized impedances). In Fig. 5.3, and subsequent reflectance 

domain plots, the magnitude of the reflectance is shown in the upper panel and the group delay i m
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milli seconds) of the reflectance [see Eq. (4.7)] is shown in the lower panel. The ordinate scale in 

each case has been chosen to show the full range of measured data.

For frequencies below 7 kHz, the measured and model reflectance magnitude are approximately 

0.97. For frequencies below 6 kHz, The group delay in both model cases is approximately 0.042 

ms. Using Eq. (4.10) we obtain an acoustic length of approximately 0.729 cm. The measured 

group delay is 0.0419 m s corresponding to an acoustic length of 0.724 cm. The group delay in 

this frequency region is due to reflections from the first discontinuity. The physical distance to the 

first area discontinuity was approximated to be 0.63 cm. The average of the measured and model 

acoustic lengths is longer than the physical length by 0.0965 cm.

For frequencies between 7 kHz and 12 kHz the magnitude of the reflectance at first decreases 

reaching a minimum of approximately 0.43 for the data and 0.54 for the model at approximately 

8.2 kHz. After reaching a minimum it increases again towards unity. In the same frequency region 

the group delay starts to increase reaching a maximum at about 8.2 kHz at which point it decreases. 

The bottom panel of Fig. 5.3 shows that at its maximum, the group delay is greater than 0.8 ms 

corresponding to an acoustic length greater than 27.8 cm. This acoustic length is more than an 

order of magnitude bigger than the entire length of the cavity. The model calculation without the 

Karal correction also has a comparable acoustic length, but at a higher frequency, indicating that 

the large acoustic length in the narrow frequency range arises independent of the Karal correction.

The natural question to ask is how does one account for the large group delay in the limited 

frequency region near 8.2 kHz? The answer to this question is gotten by going back to the 

impedance domain shown in Fig. 5.2 . In the 7 kHz to 12 kHz frequency region, the magnitude 

of the impedance goes from a local minimum of about 0.12 to a local maximum of about 5. At 

approximately 8.2 kHz, the magnitude is unity; and also near 8.2 kHz the impedance makes a
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Figure 5.3: Reflectance and group delay of cavity with decrease in diameter: The upper panel 
shows the magnitude of the group delay and the lower panel shows the group delay in milli 
seconds (ms). Two model computations are shown. Model with Karal correction (WK), and the 
model without Karal correction (NK). All subsequent figures in this chapter showing reflectance 
will follow this format. The magnitude of the reflectance shows that there are more losses in the 
data than in the model. Other than this there is good agreement between the model with the Karal 
correction and measured data.
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transition through zero phase. Recall that the driving point impedance of the two cavities was 

normalized by the characteristic impedance of the first cavity. This means that near 8.2 kHz the 

impedance of the second tube is exactly matched to the characteristic impedance of the first tube. 

When a tube (or for that matter any transmission line) is terminated in its characteristic impedance, 

it appears infinitely long when viewed from it’s driving point impedance. In other words near 8.2 

kHz there is no reflected wave and thus the large group delay. More will be said regarding the 

group delay as we analyze other examples.

5.3.2 Increase in diameter

Figure 5.4 shows model calculations and measured impedance in a cavity with an increase in 

diameter from 0.74 cm  to a diameter of 1.91 cm. The respective lengths are 0.63 cm  and 1.1 cm. 

As in the previous case (decrease in diameter) the effect, in the impedance domain, of including 

the Karal correction is to shift the pole and the zero to the lower frequencies.

For frequencies below 12 kHz, there is good agreement between the impedance magnitude of 

the data and the model with the Karal correction. With the exception of limited frequency regions 

between 2 kHz to 5 kHz, and 8 kHz to 11 kHz, the real part of the measured impedance appears 

quite noisy. This is most likely due to errors in the calibration procedure. Consequently the phase 

is in error in the same frequency region.

Impedance converted to reflectance is shown in Fig. 5.5 . For frequencies below about 1.5 

kHz, the magnitude of the reflectance is greater than unity for the measured data. This is due to 

the real part of the impedance being negative in that frequency region.

The group delay show in the lower panel of Fig. 5.5 is frequency dependent. Near 100 Hz. the 

group delay for the data is about 0.46 ms, and for both model cases it is about 0.47 ms. From this 

maximum value the group delay starts to decrease reaching a minimum, near 8 kHz, of about 0.06
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Figure 5.4: Impedance of cavity with increase in diameter dimensions used for the model arc 
/i =  0.63, d\ =  0.74, and h  =  1.1, di = 1.91. There is good impedance magnitude agreement 
between the model with Karal correction and measured data. The real part and phase are noisy for 
frequencies below about 2 kHz due calibration errors and measurement noise.
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Figure 5.5: Reflectance and group delay of cavity with increase in diameter. The magnitude of 
the reflectance is greater than one for frequencies where the real part of the impedance is negative. 
For this case, the group delay for both model cases differ from the data by at most 0.01 ms.
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m s for the data, 0.058 m s for the model with the Karal correction, and 0.048 m s  for the model 

without the Karal correction. Above 8 kHz the group delay starts to increase. In fact if the model 

calculations were carried out to much higher frequencies, then one would see that the group delay 

is periodic in frequency. For the NK correction case the period A / can be shown to be related to 

the round trip travel time in the second cavity, i.e.

Where h  is the length of the second cavity and c„ is the speed of sound in air. This gives us Hz as 

the units for A /. For the model calculations with the Karal correction the round trip travel time 

is slightly longer due to the effect of the inductor I*, . Consequently, one can expect A /  to be 

slightly less in model calculations with the Karal correction.

5.3.3 Constriction in area

The previous two examples consisted of two cylindrical cavities with either a decrease in diameter 

or an increase in diameter. In the next example a constriction of length lc and diameter dc is placed 

in the acoustic path.

We have used the Karal correction to account for the effect of higher-order modes due to 

a sudden jump in diameter. Since we are now placing a constriction in its acoustic path, the 

question of how to model a constriction needs to be examined. One solution to this is to model 

the constriction simply as a cylindrical tube. This results in two area discontinuities and thus two 

Karal correction inductors on each side of the constriction are needed. This is a valid solution 

provided that the higher order modes due to each jump in diameter have sufficiently dissipated by 

the time they arrive at the other discontinuity. This occurs under the condition of lc/d c > > 0.5 

(Karal, 1953). If this condition is not satisfied then the solution given by Eq. (5.7) cannot be used
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and more exact solutions must be computed (Karal, 1953). For this reason we have chosen the 

ratio of the tube length to the tube diameter (lc/d c) of the constriction to be greater than one.

Thus, for this case the wave propagates down the first tube a distance / 1 of 0.63 cm, the 

diameter d\ of the tube then decreases from 0.74 cm  to a diameter of 0.215 cm. The wave then 

propagates in this constricted region for a distance lc of 0.24 cm. It then encounters an increase 

in diameter of 1.91 cm. The wave then propagates down the second tube for a distance I2 of 0.85 

cm. At that point the wave is reflected by the hard-wall at the end of the second cavity. Once the 

wave is reflected, it propagates back towards the source.

To look at the possible effect of the dimensions of the middle ear cavities on its driving point 

impedance, we have attempted to choose the cavity dimensions as close to those listed in Table 4.2. 

However, we were limited by the availability of cylindrical tubes and thus the chosen cavities.

Figure 5.6 shows the model calculations and measured impedance for a cavity with two 

cylindrical tubes and a constriction as described above. As in the previous examples, not including 

the Karal correction in the model results in an error in the pole/zero frequencies of the impedance. 

Without the Karal correction the poles and the zeros are shifted to a higher frequency by almost 

1/3 of an octave. The magnitudes of the model with Karal correction and the measured data are 

in good agreement for frequencies below about 12 kHz. The exception to this being near the pole 

and the zero frequencies where the model magnitude at the pole is greater than the measured data, 

and at zero the model magnitude is less than the measured data.

In the frequency region below about 500 Hz and above 10 kHz the real part of the impedance, 

and thus the phase, are noisy. When the real part of the measured impedance is not noisy it is 

greater than that of the model by as much as a factor of 2.7 (8.6 dB).

Impedance of Fig. 5.6 converted to the reflectance domain is shown in Fig. 5.7 . The
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Figure 5.6: Impedance of cavity with a constriction in diameter: dimensions used for the model are 
/j =  0.63, d\ =  0.74, le =  0.24, dc = 0.215, and k  = 0.85, d% = 1.91. The impedance magnitude 
for the model with the Karal correction and the experimental data are in good agreement. This 
indicates that a constriction in a cavity can be represented by a cylindrical tube. For frequencies 
above about 500 Hz, the real part of the measured data is higher than the real part of the model by 
a factor of as much as 2.7 (8.6 dB). This suggests that there is a real part to Karal correction that 
has not been taken into account.
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magnitude of the reflectance is greater than unity in the frequency region below 500 Hz and above 

10 kHz. This is due to the real part of the impedance being negative in that frequency region. 

Between 700 Hz and 10 kHz. the magnitude of both model reflectance calculations are greater 

than the data by a factor of about 1.08 (0.69 dB).

The corresponding group delay is shown in the lower panel of Fig. 5.7 . The measured group 

delay starts to increase from a value of about 0.38 m s  at 100 Hz reaching a maximum of about 0.64 

m s near 900 Hz. It then starts to decrease. Above about 6-7 kHz the group delay starts to become 

a bit noisy but its average value was estimated to be close to 0.04 ms at 12 kHz. Figure 5.7 also 

shows the group delay for the corresponding model calculations. Clearly there is remarkably good 

agreement between the model with the Karal correction and the measured data for all frequencies 

below 12 kHz.

The group delay calculations with Karal correction is seen to be greater than the calculations 

without the Karal correction at most by 51% in the frequency region between 100 Hz and about

1.4 kHz. Thus, fo r this particular cavity, the effect o f the higher order modes is to increase the 

acoustic length o f the cavity in the limited frequency region between 100 Hz and 1.4 kHz by as 

much 51%. For frequencies above 1.4 kHz the group delay for the model with the Karal correction 

appears below the case without the Karal correction.

5.4 Discussion and conclusions

In the present chapter a model for representing a cylindrical cavity whose cross-sectional area 

varies along the axis of wave propagation is presented. In the model, the varying cross-scctional 

area is approximated as a series of stepped area cylindrical tubes. A chain-matrix is used to 

represent each cylindrical tube of constant cross-sectional area. The chain-matrix is formulated so
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Figure 5.7: Reflectance of cavity with a constriction in diameter Agreement between the measured 
group delay and the model with the Karal correction is excellent. With the Karal correction in 
the model, the group delay in the frequency below 1.4 kHz is greater than the model without the 
Karal correction by a factor of about 51%. This indicates that the effect o f the higher order modes 
is to increase the acoustic length of the cavity by about 51% in the frequency region below I 4 
kHz. The discrepancies in the measured reflectance magnitude and model calculations arc due to 
discrepancies in the real part of the impedance.
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as to explicitly take into account the visco-thermal losses at the tube walls.

The problem of particular interest is one with sudden changes in cross-sectional area. In such 

cases, higher-order modes exited by an area discontinuity are modeled as the Karal correction 

to the plane wave theory. The Karal correction is an inductor that appears in series with two 

chain-matrices.

5.4.1 The model

The parameters for the cavity model are the dimensions o f the cavity in terms o f stepped areas. 

As a result, it is a completely physical model for the cavities. This model is verified by making 

impedance measurements on three cavities with area discontinuities. In the first example there is 

a sudden decrease in diameter, in the second example there is a sudden increase in diameter, and 

in the final example there is a constriction in the area function.

Each of the three cavities for the impedance measurements consisted of two cylindrical tubes. 

The dimensions of the first tube were always the same in all three examples. The physically 

measured dimensions are listed in Table S.l and the dimensions used in the model are shown in 

captions to Figs. 5.2, 5.4, and 5.6. In comparison, the length h  of the second tube used in the 

model is longer than the physically measured length by about 0.04 cm. Recall that to reduce 

low frequency leaks, a layer of vacuum grease was applied between the cylindrical cavities; the 

thickness of this layer is the most likely explanation for the increase in the length of the second 

cavity.

5.4.2 Losses in the model

Losses in the chain-matrix model arise due to visco-thermal losses at the inner surface of the cavity 

walls. In that sense losses in the present model arise in a natural manner. However, measurements
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indicate that there are more losses in the data than in model calculations. This was particularly 

true for the case when there is constriction in the area. Recall that the Karal correction was 

formulated for the inviscid case. The inability of the model to not be able match the real part of 

the impedance, or equivalently the magnitude of the reflectance, indicates that the visco-thermal 

losses in the model are inadequate. This indicated that either the Karal correction is inadequate 

or that losses in the chain-matrix are inadequate. However, the real part of the measured data 

and real part of model calculations for the calibration cavities indicate that the losses due wave 

propagation are sufficiently accurate. This points the way towards further theoretical analysis of 

the Karal correction for the inviscid case. But first, more measurements on more cavities with 

different types of constrictions need to be made to strengthen this argument.

5.4.3 The effect of a constriction

In all three examples it is clear that including the Karal correction in model calculations is 

important in order to model the measured driving point impedance data with physically measured 

dimensions of the cavity.

Let us now consider what effect a constriction has on the driving point impedance of a cavity. 

To do this, comparison of Fig. 5.4 and Fig. 5.6 is in order (from now on we only consider the 

model calculations with the Karal correction). For the jump in area case (Fig. 5.4) there is a pole in 

the impedance near 10.2 kHz whereas for the area constriction case (Fig. 5 .6) there is a pole in the 

impedance near 3.2 kHz. Similarly the zero has shifted from about 2.2 kHz to about 1 kHz. Thus, 

for this particular set o f cavity dimensions, the presence o f the constriction in it's acoustic path has 

resulted in the pole frequency to shift down to a lower frequency by almost a factor o f 3, and zero 

frequency by a factor o f about 2.2. A physical interpretation of this is that an area constriction has 

the effect of increasing the effective acoustic length of the cavity in a limited frequency region.
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This interpretation was obtained by analyzing the group delay in each case (Figs. 5.5 and 5.7).

Recall that the same second cavity was used for the two cases. Thus the difference between 

the two cavities is that there is disk of length lc =  0.24 cm placed in the second cavity for 

the constriction in diameter case. Thus the length of the second cavity for the area constriction 

example is 0.82 cm whereas the length of the second cavity for the jump in area example is 1.06 

cm. If model computations were made with a jump in area with a second cavity of length 0.82 cm 

rather than 1.06 cm then the pole would have been at about 10.5 kHz rather than 10.2 kHz.

The conclusions stated above are important when one considers the possible role the bony 

septum, located between bulla cavity and the tympanic cavity of the cat middle ear cavity, has on 

the signal processing performed by the middle ear cavities. More is said regarding the application 

of this model in Sec. 4.7.3 of Chapter 4.

For future measurements, in it is recommended that measurements and calculations be made 

to much higher frequencies. The reason to do this is to test the adequacy of the model at much 

higher frequencies than has been considered in the present study.
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Chapter 6

Summary and Conclusions

The inner ear and the middle ear of the auditory periphery have been studied in this thesis. And a 

model for the earcanal is proposed. The main consideration has been to analyze each subsystem 

from an acoustic impedance point of view. Impedance of each subsystem was considered for 

modeling purposes mainly due to the availability of accurate impedance measurements for each 

anatomical entity in the published literature.

A new model based on the chain-matrix formulation is developed for the cochlea. This model 

is used to analyze effects due to variations in the scalae cross-sectional area, perilymph viscosity, 

cochlear map, and the helicotrema on the cochlear input impedance.

Similarly, a chain-matrix model is developed to analyze cavities with variations in cross- 

sectional areas. This model includes two-dimensional effects due to cross-sectional area discon­

tinuities, visco-thermal effects at the surface of the cavity walls, and effects due to finite wall 

impedances. This formulation is used to model the middle ear cavities and the earcanal. These 

model effects are experimentally verified by making impedance measurements on cylindrical 

cavities with cross-sectional area discontinuities.

' A network topology for the ossicular path of the middle ear presented. A method for
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constraining the parameters of the middle ear model based on “surgically modified” impedance 

measurements near the eardrum is used to estimate the parameters of the middle ear model. The 

inner ear model, the middle ear model, the middle ear cavity model, and the model for the earcanal 

are combined to obtain a comprehensive model for the cat eardrum impedance.

From these modeling considerations the following conclusions regarding the importance of 

various anatomical entities of the auditory periphery have been reached:

• It well known that, in most mammals, the cross-sectional area is tapered from the base of 

the cochlea to the apex of the cochlea. Until now scalae cross-sectional area variations 

of the cochlea were not considered to be important. This deficiency of previous cochlear 

models is shown to result in a deviation of as much as 20 dB of the measured cochlear 

input impedance data. It is further shown that the measured cochlear input impedance data 

can now be modeled accurately provided that the scalae cross-sectional area is represented 

accurately.

With this model for the cochlear input impedance it is shown that some of the fine structure 

of the measured eardrum impedance/reflectance is due, in part, to the fine structure of the 

cochlear input impedance.

• The effect of perilymph viscosity is shown to be important when the tube radius becomes 

comparable to the viscous boundary layer. For the cat, chinchilla, and guinea pig the viscous 

boundary layer is shown to be important for frequencies below approximately 150 Hz.

•  When the cochlea is modeled with a realistic scalae geometry, then the effect of the 

helicotrema on the cochlear input impedance is shown to be insignificant.

• Standing waves exist in model cochleae when there are reflections at both the stapes end
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and the apical end of the cochlea. Apical reflections, and thus standing waves, can be 

eliminated by taking into account the scalae area variations and perilymph viscosity. In 

such a model, reflections are dissipated by the viscous boundary layer when it is comparable 

to the scalae radius. Alternatively, apical reflections, due to the end of the cochlear map, 

can be eliminated by using a cochlear map of the form: / cf(x) =  A[ 10~*t *x_x^  -  1]. 

Eliminating apical reflections eliminates the need for an “infinite length” cochlear model.

•  Parameters for the ossicular path of the middle ear were obtained by modeling previously 

published eardrum impedance data in the following order: ( 1) “interrupted incus,” (2) 

“drained cochlea,” and (3) “intact” ossicles and cochlea. The first two of the eardrum 

measurements are for the “surgically modified” middle ear and cochlea. This method of 

evaluating the parameters for the middle ear is useful in constraining those parameters. It is 

also useful in helping to gain an understanding the role the various middle ear components 

play in the transduction process.

•  By modeling the “interrupted incus” case we conclude that at most 10% of the incident 

wave is dissipated by the eardrum and the ossicles for frequencies between 100 Hz and 7 

kHz. For frequencies between 8-12 kHz, up to 75% of the incident wave is dissipated by 

the incudo-malleolar joint.

Above approximately 10 kHz, the middle ear model is not able to approximate the measured 

eardrum impedance and reflectance data. A future experiment, that would help towards 

understanding high frequency eardrum transduction properties, would be to measure the 

eardrum impedance for the “blocked malleus” case for frequencies much greater than 10 

kHz.
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•  Between 300 Hz and 7 kHz, at most 10% of the incident wave is absorbed by the annular 

ligament.

•  The cochlear load has a profound influence on the impedance and reflectance measured at 

the eardrum. As much as 80% of the incident wave is absorbed by the cochlea near the 1.6 

kHz frequency region.

•  The chain-matrix model for cavities is used to compute the impedance of the middle ear 

cavities. This model represents the middle ear cavities in terms of its length and diameters. 

Various “surgical modifications” are simulated using the middle ear cavity model and are 

shown to be in good agreement with animal data. We know from previous measurements 

that there is a resonance in the cat middle ear cavity impedance near 4.S kHz. Based on the 

chain-matrix model for the middle ear cavities it is conjecture that there is a second bulla 

resonance near the 26 kHz frequency region.

•  Model computations for the case when the bony septum of the cat middle ear cavity is 

removed are reported. Without the bony septum, the first bulla resonance frequency is at 

about 10 kHz while the second bulla resonance frequency is at about 20 kHz. Thus, the cat 

middle ear cavity appears to have a much larger acoustic length than its physical length due 

to the foreman of the septum.

•  It is shown that the model for the middle ear ossicles and the model for the middle ear 

cavities can be combined to obtain a comprehensive model, for the cat eardrum, using the 

series model assumption.

• Experimental observations on several species has previously shown that the magnitude of the 

ear canal pressure to the stapes transfer function increases when the middle ear cavities are
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vented to the atmosphere. It is shown that this experimental observation is consistent with 

our observation, on the comprehensive model of cat auditory periphery, that, in general, the 

reflectance at the eardrum decreases when middle ear cavities are vented to the atmosphere.

•  The chain-matrix model used to represent a cavity with varying cross-sectional area is 

experimentally verified by making impedance measurements on several cavities with cross- 

sectional area discontinuities. The cavities were constructed to illustrate the effect of sudden 

changes in the cross-sectional area of a cat middle ear cavity. It is shown that higher-order 

modes due an area discontinuity can be approximated by the so called Karal correction to 

the plane wave propagation. The effect of a constriction, such as the foramen, is shown to 

result in an increase in the effective length of the cavity for a limited frequency region.
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Appendix A

List of Symbols

Many of the important symbols used in each chapter are summarized here. If a symbol is used in 

several chapters then it only appears here under the chapter where it first appeared. If there are no 

units specified then the units for the symbol are assumed to be either dimensionless or the symbol 

is descriptive and thus it does not have units.

Chapters 2 and 3

A, B , C, D elements of the 2 x 2 two-port chain matrix 
A jp area of footplate (cm2)
f}(x) BM width [(i0exp((3\x)] (cm)
po BM width at the base (cm)

P\ rate of change parameter of the BM width (cm-1)
c velocity of sound in water (cm /s)
C (x) capacitive component of Y
6 viscous boundary layer thickness (cm)

A  space discretization length (cm)
/  frequency (Hz)
f  c f ( x ) cochlear map (Hz)
Fv, Ft complex functions
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7  ratio of specific heats 
G(x ) conductive component of Y  
T(x) propagation constant (cm-1)
J 7 - T

Jn complex Bessel functions of order n
Kb(x), K'b(x)  BM specific stiffness (dyn/cm 3) 
K rw round window stiffness (dyn/cm 5)
L(x)  inductive component [Lq + Lv] of Z

Lo(x) component of L  due to fluid inertia
L v(x)  component of L  due to fluid viscosity
Affi 106 dyn — s/cm 5
rj coefficient of viscosity (g cm -1 a-1

(g • cm -1  • a-1)

np number of sections along x i
p mass density of perilymph (g /cm 3)
P(x)  pressure difference across

BM partition (dyn/cm 2)
R v(x)  resistive component of Z

ro(x) tube radius (cm) 
rv ratio of the tube radius to viscous 

boundary layer thickness 
r t ratio of the tube radius to thermal

boundary layer thickness 
a ju

S (x )  scala area (cm2)
S v (x )  scala vestibule area (cm2)
St (x ) scala tympani area (cm.2)
So scala area at the base (cm2)

si rate of change parameter
for scala area (cm-1)

U(x)  volume-velocity through scalae (cm3/ s)
ti,t particle-velocity of stapes (cm /s)
Vb m (x ) BM volume-velocity (cm3/s)
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lj angular frequency (2 tt f )
x  distance from stapes (cm)
x i  length of cochlea (cm)
Y (x )  shunt acoustic admittance per unit

length (cm4 • dyn~l • a - 1 )

Y '( x )  BM acoustic admittance per unit
length (cm4 • dyn~l • s -1)

Z(x)  per unit length series acoustic impedance
[Rv +  s i ]  (dyn — s/cm 6)

Z'(x)  equivalent impedance per unit length
for the two chambers [Eq. (2.1)]

Z b m ( x ) BM trans-membrane specific impedance,
[Eq. (C.l)] (dyn -  s/cm?)

Zc(u)  complex cochlear input impedance
[Eq. (2.10)] (dyn  -  s/cm 5)

ZCrw(u) Zc with the round window
impedance added in series [Eq. (3.5)] 

|ZC|, \Zcrw\ magnitude of Zc and ZCTW
LZcy LZcruj phase of Zc and Z^tw

Za( x ), Zb(x) elements of the T  network 
[Eq. (2.7a)] (dyn — s/cm 5)

Zh acoustic impedance of
helicotrema [Eq. (2.11)] (dyn -  s /cm 5) 

Z0(x)  characteristic impedance
of tube (dyn — s /cm 5)

Chapter 4

dtc diameter of the tympanic cavity (cm)
d/  diameter of the foramen cavity (cm)
d),c diameter of the bulla cavity (cm)
3m [Z] imaginary component of [Z]

k£l 103 dyn — s /cm 5
ltc length of the tympanic cavity (cm)
I/  length of the foramen (cm)
lie length of the bulla cavity (cm)
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P'C earcanal pressure (dyn/cm 2)
Pbc pressure in the bulla cavity (dyn/cm t2)
Ptc pressure in the tympanic cavity (dyn/cm 2)
R L ear canal reflectance for the 

intact ossicles and cochlea case

pdc ear canal reflectance for the 
drained cochlea case

RUc ear canal reflectance for the 
incus interrupted case

S?e[Z] real component of [Z]
T r transformer ratio

Tgd group delay (s)
U'C earcanal volume velocity (cm3/s )
Z ec earcanal impedance (dyn -  s /cm 5)
Zdu uncoupled portion of the eardrum 

impedance (dyn — s /cm 5)

Zdc coupled portion of the eardrum 
impedance (dyn -  s /cm 3)

Zjtm impedance due to the 
incudo-malleolar joint (dyn -  s /cm 3)

Zjis impedance due to the 
incudo-stapedial joint (dyn -  s/cm,3)

Zal annular ligament impedance (dyn -  s/cm,5)

Zi impedance due to the 
incus (dyn — s /cm 3)

Z m impedance due to the 
malleus (dyn -  s /cm 3)

Zrt radiation load impedance (dyn -  s /cm 5)
Z , stapes impedance (dyn -  s /cm 5)

Zdoc impedance at the eardrum with open 
middle ear and earcanal cavities (dyn — s/cm,5)

Z 0t characteristic impedance of 
transducer tube (dyn — s/cm,5)

Zmec intact middle ear cavity impedance
Zbo bulla open middle ear cavity impedance
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Zp/  plugged foramen middle ear cavity impedance 
Z \e ear canal impedance for the 

intact ossicles and cochlea case 
zit ear canal impedance for the 

drained cochlea case 
Z"c ear canal impedance for the 

incus interrupted case

Chapter 5

Ai area of ith cylindrical tube (cm2)
7 ; complex propagation constant

for the ith tube (cm-1)
/,• length of the ith cylindrical tube (cm)
Lk Karal correction (dyn -  s2 /cm 5)

P0 normalized Thevenin equivalent source pressure
Z 0 normalized Thevenin equivalent source impedance
Z0{ characteristic impedance of the ilh tube (dyn -  s/cm 5)
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Appendix B

Lossy cylindrical tube theory

Lossy transmission-line theory describes the acoustical properties of a tube, having section length 

A  and area 5 , in terms of the per unit length series acoustic impedance Z (u )  and the per unit length 

shunt acoustic admittance Y(u>). This theory, originally formulated by Kirchhoff (1868), is a linear 

acoustic theory which includes viscous and thermal boundary layers to account for the propagation 

of losses. To calculate Z  and Y , one needs to know the scalae radius t q ( x )  = S (x )/w . and 

the viscous and thermal boundary layer thickness (see below), which are proportional to 

Given Z  and Y , one may calculate the propagation “constant” (which is not a constant), and the 

characteristic impedance using standard transmission line formulas.

Lossy series impedance: The per unit length series acoustic impedance Z  is given by (Benade, 

1968; Flanagan, 1983; Keefe, 1984);

Z (x, w) = R v(x,u>) +  sL(x,lj)
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where the functions R v and L are defined as the resistive and inductive parts of Z. The viscous 

factor Fv is given by

Fv =  (b.2)
r vy /^ jJ o {T vS/ - ^ )

In the preceding equation

rv = ro/S (B.3)

is the ratio of the tube radius ro = s/ S / tt, and the viscous boundary layer thickness

'  = ' J i -  <B-4»

Lossy shunt admittance: The per unit length shunt acoustic admittance Y  is defined as

(Benade, 1968; Flanagan, 1983; Keefe, 1984):

Y (x ,u )  = G (x ,u )  +  sC(z,u>)

= (sS{x)/pc2)[ 1 +  (7  -  1)F,] (B.5)

where the thermal factor Ft is given by

rt(x) = r„yiVp

* ~ rty /= ]M r ty/= i) -  ( B ' 6 )

The tube radius, normalized by the thermal boundary layer thickness, is r* and is related to r t, 

by the Prandtl number Np = t)cpI k. The functions G and C  are defined as the conductive and 

compliant parts of Y.

The thermodynamic constants used in the foregoing equations are listed in Table B. The 

Bessel functions Jo and J\ are must be evaluated at a -r r /4  angle in the complex plane since r,
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Table B.l: Thermodynamic constants for perilymph
Name Parameter value units
Density P 1 g/cm i
Viscosity V 0.02 g • cm -1 • sec~l
Sound speed c 1.5 x 10s cm /sec
Prandtl number Np 7.02 dimensionless
Ratio of specific 7 1 dimensionless
heats

and rt are real and aig(v/=7) = — J. Benade (1968), Keefe (1984) and others have given results 

leading to small and laige tube radius approximations for Fv and Ft. In the interest of preserving 

the accuracy of Eqs. (B.l) and (B.5), since any error might propagate in the recursive solutions, 

we calculate the Bessel functions of complex arguments with double precision accuracy.

The real and imaginary parts of Y(x,u>) are defined as G(x,u>) and uiC (x,u). The real 

and imaginary parts of Z(x,u>) are defined as R v(x ,u )  and u>L(x,u). We further break down 

the definition of L into two componer/;, Lo and L v. The fluid inertia term Lo increases from 

the base to the apex. Since Fv is complex, it is evident from Eqs. (B.l) and (B.2) that the 

presence of viscosity gives rise to a real pan and a reactive pan. By definition, R v( x , lj) is the 

increased resistance, and Lv(x,u>) is the added mass due to viscosity. For the inviscid case, 

(77 —*■ 0), rv -*• 00, and from the large argument approximation to the Bessel functions (Morse and 

Feschbach, 1953, p. 1321), Fv -> 0. As a result, R v -* 0 and L -* Lq = ^ j .  In using the above 

results, we assume that 5  is constant over a section length A.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Appendix C

Derivation of basilar membrane 
impedance

The equations describing the parameters corresponding to a BM with fourth order partition 

dynamics are summarized here (Allen, 1980). The BM specific-impedance is

Z b m ( x , s )  =  s(m T + m oc) + K t,(x)/s +  G2(x) x H t ( x , s ) ,  ( C. l )

where Kb is the BM stiffness, m oc is the organ of Corti (OC) mass, mj- is the mass of the tectorial 

membrane, and G (x) is the shear gain. The transduction filter H t ( x , s) is defined as:

zt _  (rc + k c/s )(k T/s  + rT + sm T)
i i T \ X , S )  — 7 T -77-77— 7 ---- ;-----7 » (C.-)

( k c +  k t ) / s  +  ( r c +  r r )  +  a m j

where kc and rc are the stereocilia stiffness and damping, and similarly fcj and r?  are the tectorial 

membrane stiffness and damping. Equation (C.2) can be rendered dimensionless by redefining 

kc(x), k r(x ), rc(x), r j ( x )  in terms of Uz(x),ljp(x), ( z(x), (p(x) (Allen, 1980). Where wp. arc 

the pole, zero frequencies of the transduction filter and (p, G are the damping factors associated

182

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



183

with the pole and the zero. Equation (C.2) then becomes

where

j r . r x - G(a:) ( (3M)2 +  2C*(«M) + 1\ , r

- A r l c K P  + f t W ^ + t  j '  (C3)

In this form, one needs to only to specify u>z(x), ojp(x), ( z(x), (p(x) and the gain G (i)  to calculate 

Eq. (C.2). To estimate the parameters we have assumed the following:

up(x) = 1.3- uCf {x) (C.5)

Wj(x) =  0 .65 -u>cf(x) (C.6 )

CP(x) = 0.3 (C.7)

(z(x) = 0.5 (C.8 )

G (x) =  0.5 -exp{(x -  x l ) / x l } (C.9)

and

ucf(x) = 2irfcF(x),  (C.10)

where / cf(x) is the cochlear map. It is assumed in Eqs. (C.S) and (C.6) that the pole and the /.cm 

lie above and below / cf(x). Kb in Eq. (C.l) is evaluated according to:

K b(x) = (m T + m oc)b?CF -  mTWp(l +  (wz/ u p)2)G (x) 

(u z / u c f ) 2 -  1
(w p / w c f )2 -  1

(C.l I)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



The specific-mass of the organ of Corti is
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T^oc — Poc ' k 0c { x ) , (C.12)

and the specific-mass of the tectorial membrane (TM) is

m T =  p T  ' h x ( x ) , (C.13)

where poc and p t  are densities of the OC and the TM, hoc{x) is the height of the OC, and 

h r (x )  is height (thickness) of the TM. We assume that poc = p t  =  P  the density of water. With 

these assumptions, m oc +  m r is 0.04 g /cm 2. The cochlear map from the model was generated 

by plotting the peak location of the BM velocity as a function of the input frequency. Using 

Eq. (C. 11), the resulting calculated cochlear map fell below (in frequency) the actual cochlear 

map [either Eq.3.1,3.2,3.3)] by «  1 /y/3. This deficiency in the model of the basilar membrane 

stiffness A'&(x) [Equation (C.11)] was accounted for by multiplying R’b(x) by a constant ( a  3) so 

as to make the model cochlear map and desired cochlear map coincide.

The total stiffness in Z b m  [Eq. (C.l)] is

For the parameters chosen G2(x ) < < 1, and the parallel combination of kc and k j  is typically less 

than 0.1 of Kb(x).  Thus the second term of Eq.(C. 14) has a negligible effect [i.e. K{x)  «  Rb(x)\. 

Throughout the paper we will refer to the BM stiffness as K(x) .

As yet, / c f ( x ) is the only unspecified function needed to completely evaluate Z b m '< the effect 

of this function on Z c is one of the concerns of the study in Chapter 3.

K(x )  =  K b(x) +  G 2 ( x )
kc(x )kT(x) (C.14)

kc{x) + k r  (x )'
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Appendix D

Acoustical wave propagation in lossy 
cylindrical tubes: Approximations to 
the transmission line parameters

In appendix B, exact solutions for a lossy cylindrical tubes were given in terms of the per unit 

length series acoustic impedance, and per unit length shunt acoustic admittance. Those solutions 

were in terms of complex Bessel functions. Evaluations of Bessel functions are computationally 

expensive. The iteration procedure outlined in Sec. S.2 requires model impedance computations 

for the four calibration cavities many times over. To reduce the amount of time it takes for the 

length estimation procedure, it was desirable that an approximate solution to equations (B. 1) and 

(B.S) be used rather than the exact solutions.

This appendix summarizes Keefe’s (1984, Eq. 13 ) approximations (r„ > 2) for the lossy 

characteristic impedance and lossy propagation constant used in Chapter S of this work. The 

subscript a indicated in many of the parameters defined below stands for air.

The boundary layer thickness is defined as
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where u  =  2 irf. The radius of a tube given its area is r = sj~^. We define rVa the tube radius 

normalized by viscous boundary layer thickness as

r „0 =  r /6 a.

The characteristic impedance is defined as,

Z0 = zcT +  jzci 

where the real part of the characteristic impedance is

zcr = r0(l +0.369/r„),

and the imaginary part is

zci =  - r o(0.369/r„ +  1.149/rJ +  0.303/r^). 

The above parameters are defined in terms of

paC ar 0 =  — .

The propagation constant is defined as,

7 a  =  +J@ a,

where the real part of the propagation constant is

a a =  — (1 .0 4 5 /r„  +  1 .0 8 /rJ  + 0 .7 5 / r J )

(D.2)

(D.3)

(D.4)

(D.5)

(D.6 )

(D.7)

(D.8 )
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and the imaginary part is

0a — w / Vp, (D.9)

with

Vp 1 +  1.045/ru' (D.10)

The thermodynamic constants listed below (Benade, 1968) are valid for 26.85 ±  10 °C.

The temperature difference T  is (t -  26.85), where t is in degrees celcius; for room temperature 

T  =  0.

Note that for the lossless case (t?„ —► 0) the characteristic impedance Z0 = paca/A  and the 

propagation constant 7  =  u>/ca, as is to be expected.

Equations (D.3) -  (D.10) may be alternatively written in terms of the series impedance 7 (~-) 

and the shunt admittance Y(io) representations of the transmission line formalism (Keefe, 1984, 

Eq. (12)). Effects of finite wall admittance Yw(ui) are included in the chain-matrix formulation by 

adding to the transmission line shunt admittance (Flanagan, 1983), i.e.

pa = 1.1769 x 10"3(1 -0.00335T) g • cm " 3 (D. l l )

7/a = 1.846 x 10“4(1 +  0.002571) g • sec" 1 • cm ~l (D.12)

ca = 3.4723 x 104(1 +  0.00166T) cm  • sec~l (D.13)

Y '(u ) = Y (u )  +  Yw(ei). (D.141

A further analysis of the effects of finite wall admittance on wave propagation can be found in

.Morse and Ingard (1968, pp. 475-479).
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